
ETL-er 'CAe

AD-A212 621

The Image Understanding
Architecture Project
Second Annual Report

Charles C. Weems David B. Shu
Steven P. Levitan J. Gregory Nash
Allen R. Hanson James Burrill
Edward M. Riseman Michael Rudenko

University of Massachusetts
Computer & Information Science Department
Amherst, Massachusetts 01003 DTIC

j. ELECTE

March 1989 S SEP 20 1989

Approved for public release; distribution is unlimited.

* Prepared for:

Defense Advanced Research Projects Agency
" 1400 Wilson Boulevard

Arlington, Virginia 22209-2308

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

a q9 -*. '
f ,mm fmmmillaml

a ma i

THE IMAGE UNDERSTANDING
ARCHITECTURE (IUA) PROJECT

SECOND ANNUAL REPORT

Contract Number: DACA76-86-C-0015

For the period

September 23, 1987 to September 22, 1988

Charles C. Weems, Steven P. Levitan, Allen R. Hanson,
Edward M. Riseman, David Shu,

J. Gregory Nash, James Burrill, and Michael Rudenko

Prepared for:

Defense Advanced Research Projects Agency
Arlington, VA 22209-2308 ' l r- o

US Army Engineer Topographic Laboratories NiiS CfA&I

Fort Belvoir, VA 22060-5546 Drf TAB

By_
O', h' ',!y

Dt'ibu'o: I

Dist

IA-1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OCMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITr 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for Public Release;
Distribution is Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ETL-0542

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Massachusetts (if applicable) U.S. Army Engineer Topographic

,, Laboratories
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)
Computer & Information Science Dept.
Amherst, MA 01003 Fort Belvoir, Virginia 22060-5546

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) DACA76-86-C-O015

Research Projects Agency (Arpa Order No. 5683)

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT ITASK IWORK UNIT
Arlington, VA 2209-2308 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

The Image Understanding Architecture (IUA) Project - Second Annual Report

12 PERSONALAUTHOR(S) Charles C. Weems, Steven P. Levitan, Allen R. Hanson, Edward M. Riseman,

David Shu, J. Gregory Nash, James Burrill, and Michael Rudenko

13a. TYPE OF REPORT 113b. TIME COVERED "14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Annual J FROM 9/22/87 TO 9/22/88 1989 March 76

16. SUPPLEMENTARY NOTATION
Previous report in series: ETL-0499 The Image Understanding Architecture (IUA) Project

First Annual Report (April 1988) - Weems, et al.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB-GROUP Image Understanding Architecture, Knowledge-Based Vision,

Real-time Computer Vision, Software Simulator, Parallel
Processor

19, ABSTRACT (Continue on reverse if necessary and identify by block number)
-_7)The primary goal of the Image Understanding Architecture (IUA) project is to build a

proof-of-concept prototype of a 1/64th slice of a next generation vision architecture, and

develop the software support environment that will be needed to utilize the hardware. The

majority of the hardware effort is taking place at Hughes Research Laboratories$ bu,

California although UMass has principal responsibility for the design of tbe-TA architecture.

UM ass has also undertaken some smaller portions of the hardware development (the feedback

concentrator for the low and intermediate level arrays, and the communications router for

the intermediate level array. The majority of the software effort is taking place at UN!ass,

although Hughes isalso involved in some software development, both in support of their hard-

ware efforts, and in the form of algorithm development for specific applications on the IUA.

Durinpthe second year of this program w"e-4ew focussed on extensions to the IUA soft-

ware simulat6r programming environment, the development of library routines and demonstration

software for the IUA, construction of the custom chips for the architecture, circuit board
-OVER---

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIED/IUNLIMITED C SAME AS RPT. [DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Linda P. Craff (202)355-2818 1 CEETL-RI

DD Form 1473, JUN 86 Previous editions are obsolete. SFCURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

design, and the design and implementation of an integrated image understanding

benchmark for DARPA.

CJhis report presents the results of the IUA project for the second year

of its original two-year contract period. The purpose of the IUA project is

to design and construct a next'-generation parallel processor that specifically

addresses the needs of realtime computer vision applications.

Included in this report is a summary of accomplishments during the second

year, an overview of the IUA design, a description of the new DARPA Integrated

IU Benchmark Exercise, a summary of the performance figures for the IUA on the

exercise, and test reports and photos of chips developed through MOSIS under

this program in an appendix.

Abstract

The primary goal of the Image Understanding Architecture (IUA) project is to build a
proof-of-concept prototype of a 1/64th slice of a next generation vision architecture, and
develop the software support environment that will be needed to utilize the hardware. The.
majority of the hardware effort is taking place at Hughes Research Laboratories, Malibu,
California although UMass has principal responsibility for the design of the IUA architec-
ture. UNIass has also undertaken some smaller portions of the hardware development (the
feedback concentrator for the low and intermediate level arrays, and the communications
router for the intermediate level array. The majority of the software effort is taking place
at UMass, although Hughes is also involved in some software development, both in support
of their hardware efforts, and in the form of algorithm development for specific applications
on the IUA.

During the second year of this program, we have focussed on extensions to the IUA
software simulator programming environment, the development of library routines and
demonstration software for the IUA, construction of the custom chips for the architecture,
circuit board design, and the design and implementation of an integrated image under-
standing benchmark for DARPA.

This report presents the results of the IUA project for the second year of its original
two-year contract period. The purpose of the IUA project is to design and construct a next-
generation parallel processor that specifically addresses the needs of real-time computer
vision applications.

Included in this report is a summary of accomplishments during the second year, an
overview of the IUA design, a description of the new DARPA Integrated IU Benchmark
Exercise, a summary of the performance figures for the IUA on the exercise, and test
reports and photos of chips developed through MOSIS under this program in an appendix.

1i

Table of Contents

A bstract . 11

Table of Contents Iv
List of Figures V
Preface vi

Executive Summary 1
1. Introduction 6
2. Overview of the Image Understanding Architecture (IUA) 6

2.1 The CAAPP (Low) Level 7
2.2 The Coterie Network 10

2.3 Inter-level Communication Between the CAAPP and ICAP 14
2.4 The ICAP (Intermediate) Level 14

2.4.1 Interconnection Network 15
2.4.2 The Parallel Communications Switch (PARCOS) 16
2.4.3 Future Modifications 18

2.5 Inter-level Communication Between the ICAP and SPA 20
2.6 The SPA: High Level Processing 21
2.7 The ACU: Controlling the CAAPP and ICAP 21

3. IUA Programmer's Model 23
4. Sample Algorithms 25

4.1 Select Greatest Responding Value 25
4.2 Label Connected Components 25
4.3 Histogram 26
4.4 Compute Average Value 27
4.5 The Sobel Edge Operator 28
4.6 Create Border Corner Lists 29
4.7 Region Adjacency Graph 31
4.8 Rule-Based Region Merging 31

5. A Vision Processing Scenario for the IUA 33
6. Performance on the DARPA Integrated Image Understanding Benchmark . . . 35

6.1 Image Understanding Benchmark Description 35
6.2 Image Understanding Architecture Benchmark Results 39

7. Image Understanding Architecture Program Second Year Summary of Efforts
At Hughes 41

7.1 Test Report for the CAAPP/Glue Chip 41
7.2 The Full Daughterboard Breadboard 41

7.2.1 ICAP/ACU Interface 43
7.2.2 ICAP Memory Interface 43
7.2.3 Backing Store Controller 45
7.2.4 Two CAAPP Custom Chip Breadboard 46

iii

8. Changes in Project Schedule and Goals. 48
9. Conclusions 50
10. References. 51
11. Appendix: Test Reports for Custom VLSI Chip Fabrication Efforts at the Uni-

versity of Massachusetts 54.

- iv

List of Figures

1 IU A O verview . 8
2 Computation, Communication ana Control Requirements of Each Level of

Vision Processing 9
3 CAAPP Cell Architecture 11
4 CAAPP Instructions 12
5 64 Element CAAPP Test Chip 12
6 The Coterie Network 14
7 A 64-Input 64-Output Connection Network 16
8 Parallel Communications Switch (PARCOS) Organization 17
9 Multiplexer Tree 19
10 Microphotograph of the PARCOS Chip 20
11 Finding a Maximum Value in the CAAPP 26
12 Connected Component Labelling using the Coterie Network 27
13 Computing the Mean of Values in Selected CAAPP Cells using the Response

Count Operation 27
14 Sobel Algorithm for the CAAPP 28
15 Creating Lists of Border Corners 30
16 Intensity Image of Model Alone 36
17 Image of Model with Clutter 37
18 Steps that Compose the Integrated Image Understanding Benchmark. . .. 38
19 Image Understanding Architecture Results 40
20 Two-chip Breadboard 42
21 Daughterboard Breadboard 44
22 Associative Memory Breadboard 47
23 Feedback Concentrator Chip 54
24 ICAP Router Test Structures Chip 55
25 ICAP Router Chip 58
26 Second ICAP Router Chip 59
27 Second ICAP Router Test Chip 60

v

Preface

This document reports the results of efforts at the University of Massachusetts and
Hughes Research Laboratories during the second year of ',e DARPA sponsored Con-
tract DACA76-86-C-0015, "Image Understanding Architecture". These efforts include
both hardware and software development.

Because a great deal of documentation has already been written as part of this effort,
we have chosen to assemble the majority of this report from those documents. The report
begins with an executive summary of the major accomplishments in the second year. The
remainder of the report presents an overview of the project, and of our efforts related to the
DARPA Image Understanding Benchmark Exercise this year. The reader is thus referred
to the executive summary for a status report on the project and to the later sections for
more detailed technical information.

vi

Executive Summary

The major accomplishments and activities at UMass during the second year of the
project, including supervision of the Hughes and the University of Pittsburgh subcontracts,
are as follows:

1. The VAX simulator for the CAAPP was transported to the Sun-3 and integrated
with the SUN windowing environment. Many enhancements were made to the simu-
lator including graphical displays of CAAPP registers and memory, grayscale image
displays, point-and-click editing of register and memory planes, memory utilization

monitor display, code window, variable rate snapshot screen update, enhanced Co-
terie Network display with visible signal propagation, and an instruction cycle mon-
itor. A full simulator for the ICAP was also added, and is discussed below.

2. The TI Explorer-based simulator was enhanced with additional graphics capabilities,
including grayscale images and point-and-click editing.

3. Additional tools for the environment were developed, including a screen hardcopy
utility, a convolution language construct that acts like a loop which spirals out
through the cells in a square mask, and a memory management package that al-

locates space for variables in the CAAPP memory.

4. The group under the direction of Dr. Steven Levitan at Pittsburgh developed a

simulator for the TMS320C25 processor. This simulator was then modified into a
64 parallel processor ICAP simulation that was integrated into the Sun CAAPP
simulator. The combined simulator provides a separate ICAP code window and
ICAP register monitors.

5. The combined CAAPP-ICAP simulator was transported to a Sequent Symmetry
multiprocessor and enlarged to a full-size (512 x 512) CAAPP and a 16 processor
ICAP. The simulator can be configured to simulate a 4096 processor ICAP, but
our Symmetry does not have enough disk sp-ce to swap such a large image. The
Symmetry also greatly limits the amount of shared memory (CISM and ISSM) that
can be simulated.

6. An assembler was written for the TMS320C25 because Texas Instruments delayed
release of the Sun version of its cross assembler and C compiler. It is expected that
our assembler will be replaced by these tools once they are delivered.

7. Numerous library routines and demonstration algorithms were written for the IUA.
These include: floating point arithmetic, floating point I/O, floating point square
root, integer arithmetic and square root, integer and floating point conversion, Sobel
operator, Gaussian convolution, K-curvature, median filter, connected component

I

labeling, border tracing, convex hull, iight angle finder, windowed probes for classi-
fication of pixels and Hough transform, and graph matching. Many of these routines
were used in the DARPA Integrated Image Understanding Benchmark exercise dis-
cussed below.

8. The feedback concentrator chip for the CAAPP and ICAP was redesigned and sub-
mitted for fabrication. Five of these chips are used in the IUA prototype to provide
the Some/None, ICAP Done (0,1, and 2) and Backing Store Done signals from the
array to the controller. This fabrication run resulted in fully functional chips with a
75 nS delay from input to output. There were a sufficient number of working parts
for construction of the IUA prototype. See the appendix for a more detailed test
report.

9. The ICAP communication chips were resubmitted following the previous year's failed
fabrication. On this run there were no fabrication or bonding faults; however, we
discovered three design errors. A replication error in the multiplexer tree resulted
in several I/O paths being uninter ionally wired together. The use of a pad frame
that was not designed to be scaled to 2 microns resulted in a high drive current
for the inputs. Lastly, a timing error in the precharge circuitry for the memory
resulted in unreliable storage of connection patterns. Debugging of this chip was
aided by separate submission of a test-structure chip that contained all of the major
components of the communications chip divided into isolated units with a large
number of external test points. The chip was redesigned to correct these errors
and one additional feature was included that allows a pattern to be active while the
connection pattern memory is being changed. In the previous design, communication
could not take place while stored patterns were being altered. The new design,
with over 60,000 devices, was submitted along with another test-structures chip, but
various vendor problems delayed fabrication for a little over six months. The chips
that were eventually returned were salvaged by MOSIS from what was essentially a
bad run. Only six packaged parts were supplied, and a backup run was scheduled
with another vendor to supply additional parts. Nonetheless, four of the parts tested
were fully functional with the ability to carry data at a rate of tip to 30 MHz (three
times the requirement of the prototype). Another four working parts will be required
to construct the IUA prototype, but these should be forthcoming under the backup
fabrication run. This chip has the potential to be used in other applications, because
it implements a general 32 input, 32 output bit-serial communication switch that
can store and instantly recall up to 32 commonly used I/O connection patterns. A
connection pattern can be any one-to-one mapping, or any set of non-overlapping
one-to-many mappings (disjoint subset broadcasts). The chip can also be easily
cascaded to provide large switch networks (up to 128 128 with reasonable physical
size and component counts). We are working on a 6.1 1/0 channel version of the chip
that will enable even larger networks to be built, and that will provide distributed

2

control of routing in addition to central control. More details of the fabrication and
testing of these chips are given in accomplishments 21 through 24 below.

10. Hughes received the 64-processor CAAPP test chips that were submitted for fabri-
cation during the first year. These had several design errors, but large portions of
the chips were functional. Hughes redesigned the chips to correct those errors, but
fabrication was delayed by vendor problems for over six months. This delay resulted
in a significant slip in the develo: -nent schedule, and required Hughes to complete
the CAAPP chip design (adding the backing-store control and glue logic) and submit
it without having a chance to test their previous design. In order to compensate for
this lack of feedback, Hughes spent several months simulating the new chip. Because
the chip has roughly 130,000 devices, Hughes was unable to perform an exhaustive
simulation due to ,..sufficient computing resources (even on a large Apollo DN-4000
system, a simple simulation took several days). They were able to simulate an ex-
tracted circuit CAAPP chip performing a connected components labeling routine, at
the electrical device level, which exercises most of the components of the chip.

11. Hughes designed and built the two-chip test and demonstration jig for the 64-
processor CAAPP chips. This jig will allow us to begin to move our software en-
vironment to the hardware prior to the actual delivery of the IUA prototype. Of
course, this depends upon the success of the delayed fabrication run.

12. Hughes designed the processor daughterboards and the prototype motherboard, al-
though neither has been fabricated since the processor chips have not been built.

13. Hughes informed us that their new CAAPP chip design includes an enhanced Coterie
Network. The new version provides the ability for signals to cross without interacting,
for signals to bypass a processor on diagonal links, and for very high speed row and
column broadcasts and OR operations.

14. It was determined that an integrated circuit test system from a commercial vendor
could be used to provide much of the functionality of the custom array control unit
that we originally proposed to build under a modification to our contract. The
advantages of using a test system include greater flexibility than a hard-wired system,
the ability to also test our custom IC's and to diagnose a wider range of faults in
the prototype IUA, software compatibility with the test/demonstration system at
Hughes, greater reliability than custom hardware, and immediate availability which
will allow us to begin to transport our simulator environment to the hardware in
advance of delivery of the prototype. A commercial test s-stem is also somewhat
less expensive than development of a custom controller. 'Ihe main disadvantages
are a smaller instruction memory, a command language and interface that are not
tuned for our application, less capability for manipulating feedback from the array,
and a less-than-optimum execution speed for large or complicated tasks. It w ts

3

therefore decided that, for development of the prototype, a commercial test system's
advantages outweigh its disadvantages. However, because it may be desirable to
build copies of the IUA in the future, the group at the University of Pittsburgh
has undertaken to design a low cost replacement for the test system. If funding is
approved, such an alternative controller would be built and delivered between one
and two years after the IUA prototype.

15. In a meeting with Hughes, we assembled a complete, standardized, two volume doc-
umentation set for the IUA prototype. The manuals at all sites are maintained
identically to facilitate interactions between UMass, Hughes and the University of
Pittsburgh.

16. Hughes has designed an I/O subsystem for the IUA prototype using Datacube image
processing boards. This system is similar to another that Hughes has developed for
a different project, and so they are confident that it will work well. The system will
allow input of up to 512 x 512 images into a frame buffer. The IUA prototype will
then be able to load data from the buffer in several different ways to facilitate both
64 x 64 sub-image operations, or full image operations.

17. UMass, together with the University of Maryland, undertook the development of a
new image understanding benchmark for DARPA. The new benchmark addresses a
major deficiency in the first DARPA benchmark by simulating an entire image inter-
pretation scenario. The first benchmark was simply a set of isolated algorithms that
failed to test communication between different tasks. Also, the new benchmark pro-
vides specific test data sets whereas the earlier benchmark left many aspects of the
input data unspecified. UMass and Maryland designed the basic problem together,
and UMass then worked out the details, programmed a sequential and a parallel so-
lution to the probiem, distributed the software, data, and documentation, collected
the results, and organized a benchmark workshop for the Image Understanding com-
munity. The sequential solution was intended to reduce the coding effort required for
exercise participants and to demonstrate a valid solution to the problem. An effort
was made to incorporate as much of the first benchmark as possible into the new
benchmark in order to further reduce the efforts of the participants. The parallel
solution was coded for a Sequent Symmetry multiprocessor in order to demonstrate
that a parallel 4mplernentation could be developed. UMass publicized the benchmark
exercise thrz -i many direct contacts, and articles published in the proceedings of
the DARI- ' Workshop, International Supercomputing Conference, and the Com-
puter Vision ar: 1 Pattern Recognition Conference. Documentation was mailed to
over fifty sites . about half of those obtained the software and test data. A dozen
machines wre tested, although only seven ran the complete benchmark, and all of
the participants indicatcd that their performance was sub-optimal. UMass devel-
oped a complete benchmark implementation for the IUA, although it was still giving

. = = - -- . m n g g i R III*

results that were- uily partially correct at the time of the workshop. Debugging will,
however, only reduce the times for the IUA implementation.

18. Dr. Weems spent a significant amount of time presenting reports and giving brief-
ings on both the IUA and the DARPA Benchmark. These included a panel session
at the Workshop on Computer Architecture for Pattern Analysis and Machine In-
telligence, the British Informatics Society's Conference on Parallel Processing, the
DARPA IU Workshop, the Frontiers of Massively Parallel Computing Conference,
the International Conference on Parallel Processing, the International Supercomput-
ing Conference, the Conference on Computer Vision and Pattern Recognition, the
UMass Industrial Affiliates Meeting, the Interagency Al Steering Committee, the
Defense Mapping Agency, General Motors, Texas Instruments, the Air Force Office
of Scientific Research, Digital Equipment Corporation the Office of Naval Research,
the Supercomputing Research Center, Sequent Computer Corp., the University of
Warwick, University College London, and of course, DARPA.

19. UMass developed and submitted two proposals this year to supplement this effort.
One was to the Defense University Research Instrumentation Program for equipment
to set up a VLSI design laboratory capable of supporting very large custom designs,
such as the CAAPP processor chip. This proposal was rejected. The second was
to DARPA for continuation of our current effort for evaluation of and further devel-
opment on the IUA prototype, with the goal of designing the next generation IUA.
This proposal is awaiting further action at DARPA.

5

1. Introduction

The primary goal of the Image Understanding Architecture project is to build a proof-of-
concept prototype of a 1/64th slice of a next generation vision architecture, and develop the
software support environment that will be needed to utilize the hardware. The majority.
of the hardware effort is taking place at Hughes Research Laboratories, Malibu, California
although UMass has principal responsibility for the design of the IUA architecture. UMass
has also undertaken some smaller portions of the hardware development (the feedback
concentrator for the low and intermediate level arrays, and the communications router for
the intermediate level array. The majority of the software effort is taking place at UMass,
although Hughes is also involved in some software devlopment, both in support of their
hardware efforts, and in the form of algorithm development for specific applications on the
IUA.

During the second year of this program, we have focussed on extensions to the IUA
software simulator programming environment, the deveiopment of library routines and
demonstration software for the IUA, construction of the custom chips for the architecture,
circuit board design, and the design and implementation of an integrated image under-
standing benchmark for DARPA.

2. Overview of the Image Understanding Architecture (IUA)

The Image Understanding Architecture represents a hardware implementation of the three
levels of abstraction inherent in our view of computer vision. It consists of three differ-
ent, tightly coupled parallel processors. These are the Content Addressable Array Parallel
Processor (CAAPP) at the low level, the Intermediate Communications Associative Pro-
cessor (ICAP) at the intermediate level, and the Symbolic Processing Array (SPA) at the
high level (Figure 1).' The CAAPP and ICAP levels are controlled by a dedicated Array
Control Unit (ACU) that takes its directions from the SPA level. In each layer of the
IUA, the processing elements are tuned to the computational granularity and algorithms
required by that particular level of abstraction. For example, it is inappropriate to try to
run concurrent LISP at the lowest level, because processing there is primarily concerned
with fast pixel operations, and should be tuned for real-time image processing. At the
highest level, on the other hand, symbolic Al processing will be the main objective, so the
high-level processors are selected for their ability to run LISP code efficiently. Figure 2 is
a tabular sutmmary of the architectural requirements of each level of abstraction in vision
processing, in terms of computation, communication, and control.

'The term "content-addressable" is a synonym for "associative" and is an alternate term that now is not
as widely used as it was when some of our work began [Foster, 1976, Weems, 1984a.]

6

We are currently building a 1/64th slice of the IUA as a proof-of-concept demonstration.
The discussion that follows describes the full IUA, except where it is specifically noted that
a feature pertains only to the prototype.

At the high level, the IUA is purely a MIMD parallel processor. Additionally, the
intermediate and low levels of the IUA may be treated in a variety of modes of parallelism
to allow multiple hypotheses from the SPA to be evaluated in parallel at the lower levels.
These include the CAAPP operating in pure SIMD or local-SIMD mode, and the ICAP
operating in synchronous-MIMD or pure MIMD mode.

A brief explanation of how the local-SIMD and synchronous- MIMD modes differ from
the familiar SIMD and MIMD modes is required. In local-SIMD mode, the CAAPP cells
execute in disjoint SIMD groups, with each group able to operate on locally broadcast
values, and to locally compute its own summary values in parallel with all other groups.
This allows different parameters to be employed in processing disjoint portions of the im-
age, with all portions of an image being processed simultaneously. Local-SIMD differs
from Multi-SIMD processing in that all processors receive the same instruction stream,
whereas with Multi-SIMD the disjoint groups receive separate instruction streams. The
prototype IUA does not support Multi-SIMD processing, but we are exploring several ways
of adding that capability to the full scale IUA. In synchronous- MIMD mode, the program-
ming paradigm is more like SIMD than MIMD: the ICAP processors execute the same
program, but have their own instruction pointers so that they can branch independently,
and globally synchronize for each stage of processing. Synchronous-MIMD has the ad-
vantage of being as simple to program as a SIMD system, but without the time penalty
usually encountered in SIMD systems associated with sequential execution of all the paths
in a branching control structure.

2.1 The CAAPP (Low) Level

The CAAPP is a 512 x 512 square grid array of custom 1-bit serial processors intended to
perform low-level image processing tasks. The CAAPP is similar in many ways to CLIP-4
[Duff, 1978], MPP [Batcher, 1980), DAP [Hunt, 1981], GRID [Arvind, 1983], GAPP [Davis
and Thomas 1984], and the Connection Machine [Hillis, 1986]. However, its architecture is
especially oriented towards associative processing with an emphasis on fast global summary
feedback mechanisms supported in hardware. The CAAPP is also specifically designed to
interact with the ICAP in a tightly coupled fashion for both bottom-up and top-down
processing. Thus, the CAAPP has been tailored to permit flexible control, to provide
rapid feedback to the controlling processes so that they may exercise control in response
to actual image properties, and to integrate fully into a hierarchically organized vision
architecture.

The CAAPP processing elements are linked through a four way (S,E,W,N) communi-
cations grid that is augmented with circuitry that allows certain types of long distance
communication to take place quickly. Each processor can execute an instruction in 100

7

64 LISP processors (MIMD)

- Instantlatlon of
schema strategies.

* Construction of scene
Interpretatlon.

Symbodic Processing Array (SPA) Top- down MIMD
control of grouping.

512 M Bytes Global Shared Memory (ISR) 6K
* 64x64(4K)ArrayOf

/A \A 16 - bit processors.

• SMIMD/MIMD operation.
* Executes grouping

Intermediate and Communications pcesses
Associative Processor (ICAP) * Stores intermediate)syrnbolic representation.

Parallel Associative
Communication

1 G Bytes Local (CAAPP - ICAP) Shared Memory and Control.

I... . 512 x 512(256K) Array of
S1 - b it (serial) processing

elements.
T* Custom VLSI chips.

Content Addressa bleArray ParallelProcsr (CAAPP) Stores sensory data.
* Executes low - level and

segmentation algorithms.
Sensory I I Dat

Figure 1: IUA Overview

8

Low Level Intermediate Level High Level
* Fine grained * Medium grained 0 Coarse grained
. 256K 8-bit pixels * Thousands of "tokens" 9 Hundreds of "schemas"
@ 8-bit integer arithmetic * 16-bit integer arithmetic e 32 bit real and integer

"_ o Limited real arithmetic o 32-hit real arithmetic arithmetic
: o Comparisons * Building "token" records o List traversals

9 Maintaining lists of o Symbolic processing
token relationships

o Local neighborhood . Local neighborhood o Blackboard access
. 9 Across connected components o Long distance o Control info to lower levels

* Structured patterns 9 Broadcast o Queries to lower levels
9 Broadcast, 9 Down and up o Data up from lower levels
* Up o Summary feedback o Coarse grained messages
o Summary feedback o Medium length messages
9 High-speed I/O
o Fine grained messages
o SIMD-Associative o SIMD-Associative o M IMD
* Multi-SIMD o Synchronous-MIMD o Distributed control
o Locally associative SIMD o MIMD directed by o Attention focusing

o o Central control higher level mechanisms
* Local activity control o Central and local control o Coordination with central

control of lower levels

Figure 2: Computation, Communication and Control Require-
ments of Each Level of Vision Processing

- 9

nanoseconds and contains 5 one-bit registers, an ALU, data routing circuitry, and 320 bits
of RAM that acts as an explicitly managed cache memory. Each element has access to a
32K-bit backing store memory that is dual-ported with the ICAP. The backing store is also
referred to as the CAAPP-ICAP shared memory (CISM). The architecture of a CAAPP
cell is shown in Figure 3, and a table of CAAPP instructions is shown in Figure 4. The
custom VLSI chip layout containing 64 CAAPP Processing Elements (PE's) is shown in
Figure 5. The CAAPP chip is being built in 2-micron CMOS via the DARPA MOSIS
facility and will contain roughly 120,000 transistors.

The key to integrating the CAAPP into the IUA is its combination of associative feed-
back and control mechanisms. One of the principle feedback mechanisms in the CAAPP is
the array-wide logical OR output, called Some/None, which indicates whether any CAAPP
cells are in a given state represented by the response bit. At the end of each instruction
cycle the global controller receives a Some/None signal for the full array, while the ICAP
processors receive the Some/None indicau*on for that portion of the CAAPP array con-
nected to each of them.

A count of all responding cells is also available at the global controller. The counting
operation is used to gather statistics about an image and the results of processing. For
example, through counting we may quickly determine the mean and standard deviation
of an attribute value for a given set of processors (see section 3.4). Each ICAP processor
receives the count for the 8 x 8 subarray of the CAAPP associated with it.

Communication among CAAPP cells may take place in four different ways. One way
is through global feedback and rebroadcast. This method is used when all or most of the
CAAPP processors must be told the value of one of the processors (e.g. broadcasting
the maximum value so that all cells can normalize their values). A second way is via the
ICAP; in some cases it is more efficient to transfer CAAPP data to the backing store and
let the ICAP move it across the array and place it in the backing store of the appropriate
CAAPP cell. The third way uses the nearest neighborhood (S,E,W,N) mesh, which allows
a CAAPP processor to read a bit from up to two of its neighbors at once. This is similar to
the network employed in other mesh-connected SIMD parallel processors. The remaining
communication mechanism is described in the next section.

2.2 The Coterie Network

The fourth means of communication among CAAPP processors involves a new and pow-
erful variation on the nearest-neighbor mesh called the Coterie network. This is similar
to the reconfigurable buses proposed by Kumar [Kumar, 1985], Miller and Stout [Miller,
19871 and the polymorphic torus proposed by Li [Li and Moresca 1987], but differs in that
it allows general reconfiguration of the mesh, and multiple processors to write to the mesh
at the same time. By adding the simple switch network shown in figure 6, it is possible,
under program control, to create independent groups of processors that share a local as-
sociative Some/None feedback circuit. The isolated groups of processors can then respond

10

I

Figure 3: CAAPP Cell Architecture

31 27 23 18 13 98 9

DFen -. Add...,

IYNH (inhibit)
0 Non-inhibit -aways active

I n nhibit if A =0
2 lu1hibit if A =0or S/N = Some
3 inhibit if A = 0 or S/N = None

-c, eS'
Sc, eS,

- .4S,__ _ n De.-t
0ZEZERO Coterie =: R X,.' 0

I A .,X1
2 5 ~ 'R A.,X1 2
3 IV I A JR .4, X J 3
4 Y I VJ R Y 4
s x ix I EDJ R x 5
6 B B I + J +2=-R B 6

7 4 A ICAP C =:,R A
S memory memory I => Z mlemory 8
9 - - memory z: AIR -9

1D - vnernory z:;- R, SB - 10
Af R-: - ~ Rmemory - 11

12 AIRSB= memory - 12
13- - 13
14- - 14

Dest = C, ED R

Figure 4: CAAPP Instructions

Figure 5: 64 Element CAAPP Test Chip

12

to globally broadcast instructions in a locally data-dependent fashion (i.e. local SIMD)
which permits parallelism to be employed with more flexibility. For example, suppose that
an image is divided into a large number of regions and that we wish to determine some
attribute for each of the regions. In a typical SIMD architecture, this would be done by
sequentially selecting each region for analysis or in parallel by complex communication
between neighbors where the attribute is computed via a propagating wave that checks
region labels at each step. However, using the coterie network in the CAAPP, in many
cases, all regions can perform their own local evaluation in parallel without having to check
region labels after one initial step of neighbor comparison.

The name Coterie Network is based upon the similarity of the isolated processor groups
to a "coterie": that is, a group of people who associate closely because of common purposes,
interests, etc. [Random, 1987]. The isolated groups of processors are thus referred to as
coteries. Note that the Coterie Network is separate from the nearest neighbor-mesh, which
we refer to as the SEWN Mesh.

Creation of a set of coteries typically begins with opening all of the switches that link
processors. Using the SEWN Mesh, the processors compare their own values with the
values of their neighbors. They then close the switches that connect them to neighbors
with similar properties, leaving open the switches that would connect them to dissimilar
neighbors. Of course similarity can be defined by an operation such as a global broadcast
of a threshold and a local comparison. In this way, processors with similar properties
establish independent coteries. It should be fairly obvious to the reader that, among other
things, each region of a segmentation could be a coterie of cells. Because the CAAPP
processors can save and restore the switch settings that make up a set of coteries, it is
possible to reconfigure the Coterie Network from one processor interconnection pattern to
another by broadcasting a single instruction.

Within a coterie, there is a network of wire to which all of the processors are connected.
Each active CAAPP processor may be instructed to output a bit onto its coterie's network
and then read whatever bit value is currently on the network within its coterie. When more
than one processor in a coterie tries to output a bit onto the network the value that appears
on the wire is the logical OR of the output bits of all of the processors in the coterie. The
shared network is thus functionally equivalent to the global Some/None feedback circuit
except that its output is locally formed and only available within a coterie. In addition to its
associative feedback function, the Coterie network can be used to broadcast a value from a
single processor to every member of the coterie as in a Broadcast Protocol Multiprocessor
[Levitan, 1984]. This is accomplished by first selecting a single processor within each
coterie, using an associative search operation in parallel within all coteries. Subsequent
instructions for placing a value onto the network will only be performed by these selected
cells. However, all of the cells will perform the operations for reading the value that is on
the network. In this way, the Coterie Network can be used for local broadcasting of data
values. The local feedback and broadcast processes can occur in every coterie in parallel.

13

z ; ! __ : ': ,'- -:: " .] < I"

i~~~~~~ i.:i.;. :: l
I: _______

-. N w

.. ,,'. ,., ? w . ,.

Figure 6: The Coterie Network

2.3 Inter-level Communication Between the CAAPP and ICAP
The principal mechanism for transferring data between the CAAPP and ICAP is the CISM
(or backing store). Each ICAP processor has access to the 256K-byte block of memory
that also acts as the 32K-bit backing store for each of the 64 CAAPP cells associated
with an ICAP processor. Swapping between the CAAPP and CISM is accomplished by
dual-porting a portion of the on-chip CAAPP memory. When data is moved between
the CAAPP and the CISM it goes through an automatic corner turning mechanism that
provides bit-serial data access to the CAAPP and byte-parallel access to the ICAP.

2.4 The ICAP (Intermediate) Level
The ICAP is designed to manipulate tokens (symbolic descriptions of extracted image
events and their associated attributes) at the intermediate level and to support data base
functions that allow access to these tokens by grouping processes running on the ICAP,
and by symbolic interpretation processes, running on the SPA processors. For example,
the recognition of a house roof in an image may require the ICAP to group together long,
straight, parallel lines, and then to extract parallelograms that are candidate roof outlines.
Should the need arise, the results of Further processing in the CAAPP can be integrated
with the representation in the ICAP because the ICAP representation is in approximate

1 '1

registration with the original image events in the CAAPP.
The ICAP is a square grid (64 x 64) array of Texas Instruments TMS320C25 16-

bit digital signal processor chips. Each of the 4096 ICAP processors consists of a CPU,
256K bytes of local RAM, 384K bytes of dual-ported memory for interacting with the

CAAPP and SPA, and network communications hardware. The ICAP processors operate
at 5 million instructions per second and can perform a 16-bit multiply-and-accumulate
operation in a single instruction time. In addition to its speed, a digital signal processor
was chosen at the ICAP level because its instruction set and arithmetic capabilities are
well suited for performing computations in spatial geometry. Three-dimensional geometric
projections, computing distances, and matching operations are common operations that
may be needed at the intermediate level of vision processing.

Control of the ICAP is provided by the ACU (in Synchronous-MIMD mode) and by
the SPA (in MIMD mode). Once sensory events have been extracted and represented
symbolically at the intermediate level in the ICAP (and continue to evolve as grouping
operations take place), each of the SPA processors may then query the ICAP in parallel
to establish and verify hypotheses. The ICAP provides three different global OR outputs
available to the controller that can be used to determine the status of processing in the
ICAP array. The choice of meaning for each signal is left up to the programmer. For
example, the programmer may choose to have them indicate completion of a task in the
ICAP array with or without exceptions. Another use is as an associative Some/None
mechanism. Also provided, is a global summation mechanism is also provided that uses
the global count hardware in the CAAPP to form a sum of an 8-bit value from each ICAP
processor.

The horizontal links between the ICAP processors provide the intra-level communi-
cations necessary for grouping and merging processes to operate on token attributes and
token relations within the intermediate symbolic representation. In the IUA prototype,
which has only 64 ICAP processors, the bit-serial I/O links between the processors are
connected through a centrally controlled 64 x 64 bit-serial crossbar switch. Thus it is
possible to establish any point-to-point network topology in the prototype ICAP. Various
methods of extending the ICAP communications network to the full-size ICAP array are
under consideration.

2.4.1 Interconnection Network

The ICAP connection network is used to set up a connection pattern between the N
input ports of these same processors. The connection network can be programmed on-
line, to make a direct link from the output port of any processor to the input port of one
or more processors. The Parallel Communication Switch (PARCOS) chip is capable of
broadcasting, allowing the connection network to realize any of the possible N' mappings
of its input ports onto its output ports. All of the processors can send and receive data on
their links at the same time. These links can be changed by the ACU at any time.

15

COL I COL 2

1* 30- 2

4 Switches (32 x 32) 4 Switches (32 x 321

Figure 7: A 64-Input 64-Output Connection Network

The 64-input 64-output connection network for the IUA prototype uses 2 stages of
32 × 32 PARCOS chips. The PARCOS chips are connected to make a 64 × 64 cross-bar
switch with broadcast capability as shown in Figure 7. A detailed discussion of the network
can be found in (Rana 881.

2.4.2 The Parallel Communications Switch (PARCOS)

The PARCOS chb,~ consists of a communication matrix of 32 bit serial inputs and 32 bit
serial outputs, a control memory, a set of registers and associated read/write circuitry.
The PARCOS chip organization is shown in figure 8. Multiple PAR(COS chips can be used
to build larger connection networks, such as the 64 × 6,l netwvork in the 1UA prototype.

The communication matrix of PARCOS consists of 32 tree-structured multiplexers,
each of which is a I of 32 multiplexer. All 32 input lines are connected in parallel to each
of the 32 multiplexers. With this architecture, multiple outputs can be connected to the

16

-- ~~~~ ,, •ini I l

Input 32 X 32 Communication Matrix Output

Control Pattem Register

.......-. *4....

Control Word 1

Control Word 2

C-nnct.,n:Potten Cache

Control Word 3

Row Select AA

Register+

Address Data WR 1 WR2 PD PR
(6) (5

Figure 8: Parallel Coiziuunicat io I's Switchl (PARCOS) Organization

17

same input, providing broadcast mode capability. Figure 9 illustrates one multiplexer tree.
It will be noted that there are two multiplexer trees, one made oiut of n-channel transistors
and the other made out of p-channel transistors, with their outputs connected together.
By properly sizing the two types of transistors, we have achieved near equal delays for both
low-to-high and high-to-low transitions at the output. For any multiplexer., path selection
at any level of the tree is done with a single bit of a control word. Thus. 5 control bits are
required to select one of 32 inputs for each multiplexer, or 32 - 5 = 160 bits for configuring
the entire communication matrix.

The PARCOS control memory consists of 32 control words, where each control word
contains the 32 bytes of 5 bits required for one configuration. The on-chip control memory
is therefore constructed so that PARCOS can hold up to 32 of the most frequently used
connection patterns for larger netwoiks built out of this chip. The control memory is
called the Connection Pattern Cache (CPC), because it is analogous to storing the most
frequently used pages in a memory system cache.

The connectivity information for the communication matrix is stored serially into the
control words. To write connectivity information in a control word of the CPC, a row
number is first set in the Row Select Register (RSR). The RSR is mapped into the chip's
memory space, allowing the address bus in PARCOS to select the register, and the binary
value on the data lines determines the row number. Next, 32 5-bit bytes are written into
addresses 0 -31. The memory location's address is the output port number and its contents
determine which input port it is connected to. If only a subset of links need to be modified,
this can be done by selectively writing only into locations corresponding to those links.

Reswitching the configuration of the communication matrix from one stored connection
pattern in a control word to another requires a single write instruction, where the address
of a new control word is placed in the RSR, and the control word's contents are loaded
into the Control Pattern Register (CPR), activating a new connection pattern. Notice that
the CPR allows a control word to be modified in the CPC without disturbing an existing
configuration in the communication matrix. In many cases, this feature allows the time
to write a new connection pattern from the ACU into the CPC to be hidden while the
processors are working on an algorithm.

PARCOS is implemented on a single 84 pin, 50,000 device, VLSI chip. It is a full
custom design, built out of a 2 micron, P-Well, double metal, scalable, CMOS technology
available through MOSIS. Each CPC memory bit is a 6 transistor static RAI cell. The
worst case delay in broadcast mode from one input to 32 outputs is less than 50nS. A
microphotograph of the chip is shown in Figure 10.

2.4.3 Future Modifications

The design of the PARCOS chip was limited by the number of pins and not by the silicon
area. A study for redesigning the PARCOS chip is underway with the goal of providing a
64 x 64 communication matrix with more than one hundred control words. Also, nuec ha-

18

cu

rl cu

Figure 9: Multiplexer Tree

F i:F'|

- -{ i--- ------------m

r U FF !FI F Lj V IIr Lt 'rfII1If r V -~

Figure 10: Microphotograph of the PARCOS Chip

nisms will be provided for self-routing in these chips in e (1) time. A 64 x 64 single chip
implementation will allow us to build a 4096-input, 4096-output network by connecting
512 of these chips in a modified 4-stage, strictly non-blocking Clos' [Clos 53) topology or by
connecting only 192 of these chips in a 3-stage, rearrangeably non-blocking Benes' [Benes

62] topology.
Currently, it is not possible to directly copy or combine connection patterns in the CPC.

Adding the ability to copy one CPC connection pattern into another under the control of
a mask register will allow us to build new connection patterns from old ones, which will
reduce the time required to create a new pattern in certain cases.

2.5 Inter-level Communication Between t'he ICAP and SPA

The ICAP-SPA Shared Memory (ISSM) provides the principal communication path be-
tween the top two levels of the IUA. It is viewed as an I/O device by each ICAP processor.
A given ICAP processor can write (or r,-ad) values to (from) an I/0 buffer in the ISSM.
The ICAP then initiates a block transfer between the I/O buffer and a page of its choosing
in the ISSM RANI. An ICAP processor may only access the 128 K-byte segment of ISSM
that is associated with it. Hlowever, each SPA processor has global access to the entire
ISSM for all of the ICAP processors. This structure allows processes in the SPA to access
the results of ICAP processing regardless of their spatial locations in the array.

20

2.6 The SPA: High Level Processing

The SPA processors will run a LISP-based blackboard system [Erman et al. 1980; Nii,
1986, Draper et al. 1987, 1989], through which the various knowledge-based processes
can communicate while cooperatively constructing an interpretation of an image and de-
termining the relationships of the various image components to stored knowledge. From
the point of view of the blackboard system, the CAAPP and ICAP will appear as knowl-
edge sources at different levels of abstraction. Knowledge-based processes in the system
can activate different processes in the CAAPP and ICAP either for the full array or for
independent sub-arrays. Thus, the SPA processors operate in MIMD mode with commu-
nication through the blackboard. The detailed architecture of the SPA has not yet been
fully defined. In the first prototype of the IUA, which is a 1/64th vertical slice of the full
IUA, the SPA will be a single Motorola M68020 class processor, augmented with a sym-
bolic co-processor. A separate research inveztigation within the UMass VISIONS project
is currently exploring the implementation of cooperative algorithms and data structures
using a commercially available shared-memory multiprocessor at the SPA level [Draper et
al. 19881. This experience is providing additional direction to the future scaling up of the
IUA at the SPA level.

Curreittly, the full SPA is envisioned as consisting of 64 or more processors, each capable
of running LISP. Each processor will have some local memory and will have access to a
global shared memory that will include the ISSM and the blackboard. The shared memory
decouples the SPA processors from the locality of information in the image.

2.7 The ACU: Controlling the CAAPP and ICAP

One major design goal for the Array Control Unit (ACU) was to maximize the rate at
which instructions are issued to the CAAPP. This meant that the overhead for controlling
loops, branches, and subroutine calls in the ACU had to be minimized. A second major
design goal for the ACU was to minimize the cost of implementing a complete development
environment for it. Preferably, the ACU would execute a commonly used instruction set
so that software could be transported from an existing machine.

Clearly, the first goal req-u;red a custom processor, while the second goal dictated an
off-the-shelf processor. The solution to this dilemma was to incorporate both into the ACU
design. Thus, the ACU contains two separate processors that can issue instructions to the
CAAPP (and control the ICAP as described below). The two processors are referred to
as the Macro-controller and the Micro-controller.

The Macro-controller is a standard, off-the-shelf processor that brings with it the wide
range of software tools that are available for such a processor. It can issue instructions to
the CAAPP in two ways. The simplest way is to take direct control of the instruction bus
and write out data values that will be interpreted as instructions by the processor arrays.
Even at its maximum rate, however, most standard processors can only issue instructions

21

at about one-tenth of the rate that the CAAPP can execute them. The second method for

tne Macro-controller to issue instructions is to issue subroutine calls to the Micro-controller.

The Micro-controller is a custom processor, driven by horizontal microcode. It is capa-

ble of issuing an instruction to the CAAPP every 100 nanoseconds, with minimal overhead

for loop, branch, and subroutine control. The Micro-controller will have a large library

of CAAPP routines in its program memory, any of which can be called by the Macro-

controller. When the Micro-controller completes execution of a CAAPP routine, it returns

a status flag to the Macro-controller which may then issue a new call.

The routine-calling mechanism permits the user to write applications in a high-level

language for the Macro-controller, and yet obtain good peak instruction rates for operations

on the CAAPP. Although this does not provide 100% utilization of the CAAPP, it is
reasonable to expect 50% utilization in many cases, which should be adequate for most

research and development situations.
Although the only source of instructions for the CAAPP is the ACU, the ICAP pro-

cessors each have their own program memory. The ICAP program memory is loaded with

a large library of service routines upon system initialization. The way in which the ACU
issues instructions to the ICAP is by storing a user program into ICAP program memory
and then issuing an interrupt to the ICAP that causes it to jump to the user program. (The

program is broadcast to all of the ICAP program memories in parallel.) An ICAP user

program is typically just an execution script (written in C, Forth, or assembly language) of
calls to the ICAP library. Thus, the ACU and ICAP interact very little when a program is
running in the ICAP; the exception is when the ICAP program reaches a global synchro-
nization point - this must be mediated by the ACU. The ACU can also set the ICAP to
operate in MIMD mode, by turning control over to a task queuing program in the ICAP
processors. The queuing program reads execution scripts from the ISSM according to a
predefined protocol. When the ICAP is executing in MIMD mode, it depends upon the

SPA to provide coordination of any required synchronization between ICAP processors.
The ACU thus supports the close interaction between the CAAPP and ICAP during

the initial phases of interpreting an image. However, the ACU also permits the CAAPP
and ICAP to work independently, with the ICAP taking directions from the SPA as the

high level interpretation processes come into play. This allows the CAAPP to concurrently
perform additional low-level processing, such as integrating information from other sensors

or starting to process the next image.

22

3. IUA Programmer's Model

The IUA application programmer will view the system as a shared memory multiproces-
sor (the SPA) with a pair of tightly coupled array processors (the CAAPP and ICAP).
Programs will be written primarily for the SPA level, with the ACU treated as an ad-
ditional SPA processor. Thus, standard high level language mechanisms will be used to
communicate and control concurrency in the SPA and between the SPA and the lower
levels.

There will be two types of SPA processes: those that run purely at the high level, and
those that service requests for low and intermediate level processing. The former run in
the actual SPA processors, while the latter are executed by the ACU. The SPA operating
system will automatically recognize ACU programs as having special resource requirements
and schedule them for execution only by the ACU.

Programs that run on the ACU will make use of additional language extensions that
support attached array processors. Libraries of macros and subroutines will also be avail-
able for common low and intermediate level operations. The interface to the CAAPP will
be tightly coupled, with the ACU program actually issuing all of the commands on which
the CAAPP operates. The ICAP interface is more loosely coupled, with the ACU pro-
gram issuing processing requests to the ICAP array (in the form of execution scripts), and
controlling synchronization of the ICAP processors with each other and with the CAAPP.

New library routines for the CAAPP are developed in a two stage process. First, a
routine is rapidly prototyped using the high level language features provided for application
programs. If maximum speed is not required, then this will be sufficient. However, if speed
is a primary issue, then the rapid prototype algorithm will be migrated into horizontal
microcode for the microcontroller portion of the ACU. Because the microcontroller is not
a standard processor, it is reasonable to expect that the set of tools for the standard
architecture macrocontroller will always be more complete and convenient than those for
the microcontroller. Thus, it is unlikely that new library routines will ever be commonly
developed directly for the microcontroller.

New routines for the ICAP processors will be cross-compiled or assembled on the host,
and downloaded to the ICAP program memories at system initialization. Each ICAP
is programmed as a uniprocessor with two serial I/O ports and access to a special data
memory. The I/O ports allow communication with other ICAP processors, and the memory
provides the interface to the CAAPP. Communication with the ACU is via interrupts from
the ACU, a set of three Done response bits, and a global Sum of 8-bit values output from
the ICAP processors. The ACU can also halt the [CAP processors, write a script into
program memory, and then issue an interrupt that causes the ICAP processors to jump
into the script. When an ICAP processor reaches a synchronization point in the script,
it issues a Done signal and then waits for the ACU to send an interrupt that allows it to
continue. A script consists mostly of calls to the ICAP routines that were downloaded at
system initialization.

23

Rather than writing new library routines for the ICAP, most applications programmers
will write ICAP scripts. A script will consist of an ICAP portion and an ACU portion.
The ACU downloads the ICAP portion at the start of script execution. The ACU portion
of the script is then executed, which begins by activating the ICAP portion. The two
portions then interact as necessary for operations such as synchronization of the ICAP
processors, or broadcasting of parameters. Note that the ACU portion of an ICAP script
can contain CAAPP commands, so that it can control interactions between the two arrays.

The script mechanism will also be used in writing SPA programs that control the ICAP
in MIMD mode. When used with the SPA, a script has an ICAP portion and an SPA
portion. Because of differences in the hardware interfaces between the ICAP and ACU, and
the ICAP and SPA, the formats of the two types of scripts will not be identical. However,
they will follow the same general form and be as similar as possible. Most importantly, the
script mechanism will provide a common data format interface so that the same software
can be used with ICAP output data on either the ACU or the SPA. This is in keeping
with the philosophy that the ACU should appear, as much as possible, to be just another

SPA processor.

24

4. Sample Algorithms

The purpose of this section is to provide a sense of the types and range of operations that
can take place on the IUA. It is by no means a complete discussion of all of the system's
capabilities. The algorithms presented here are specifically intended to demonstrate the
various forms of communication that occur within and between the CAAPP and ICAP
levels. A processing scenario that involves the SPA level is outlined in Section 4.

This section will begin with several fairly simple, but detailed, algorithms in order to
show how the IUA is programmed. The algorithmic notation used is very close to one
of the programming languages employed with the IUA software simulators. However, the
notation is simplified to improve the clarity of the presentation. Macro operations are also
used where their machine language implementation is not an important element of the
algorithmic method. For example, adding two 8-bit quantities in the CAAPP is actually
performed bit-serially by a sequence of instructions, but a typical program will make use
of the standard macro for addition to perform this operation. Following the detailed
algorithms, several more algorithms will be sketched whose complexity makes them too
lengthy to be presented here in detail. The concepts behind the algorithms are worth
considering, however, because they demonstrate additional capabilities of the IUA.

4.1 Select Greatest Responding Value

The algorithm to find a maximum value in the CAAPP (Figure 11) demonstrates the use
of the associative Some/None feedback from the CAAPP array. The goal is to select,
from among all active cells, the cell or cells that have the greatest value in a given field of
their memory. In addition, that value is to be made available in the ACU for subsequent
processing.

The algorithm begins by loading the high order bit of a given field into the response
register of all active cells. The global controller then tests the Some/None output of the
array. If any cells have their high order bit set, then they are candidates for the maximum
value, in which case, any cells that have a zero in their high order bit are then deactivated.

However, if no cells have their high order bit set, then none are deactivated because they
are all still potential candidates. This process repeats with each successively lower order bit
in the field. When the low order bit has been processed, only those cells that contain the
maximum value will remain active. For each iteration, the controller saves the Some/None
response so that the maximum value is available in the controller at the conclusion of
processing. This takes 24 CAAPP instruction cycles (2.4 microseconds) for an 8-bit value.

4.2 Label Connected Components

The local associative Some/None operation provided by the Coterie Network is demon-
strated by the label connected components algorithm. Because finding a maximum uses

25

FOR Bit.:= Field Length - 1 DOWN TO 0 DO {Beginning with the high-order bit}

Response:= Field[BitNuml {Put bit in response register}

IF Some {If any cell has a I in this bitt

THEN
Activity:= Response {Then turn off activity in cells with a 0 in this bit

Figure 11: Finding a Maximum Value in the CAAPP

only broadcast and Some/None feedback, it can be performed locally within a coterie and
in parallel with every other coterie. This leads to the simple algorithm for computing a
connected component labeling of an image shown in Figure 12.

The algorithm begins by loading each processor with its address in the array from the
backing store memory, which serves to give each processor a unique number. Next, the
Coterie Network switches are opened between processors that are on region boundaries (i.e.
between pairs of processors that have different values), establishing a coterie for each image
region. Lastly, all regions in parallel determine their local maximum address value. Note
that this is the same algorithm as for finding a maximum value in the entire array except
that the coterie Some/None response is used in place of the global Some/None response
to control the setting of activity. As part of finding the maximum, every processor in a
coterie stores the maximum address value for all cells in its coterie in its own memory.
Because this value is different for every region, the result is that each connected group of
processors is assigned a unique label that is common to every processor within a group.
From our electrical simulations of the Coterie Network, we calculate that this algorithm
will take approximately 50 microseconds to execute.

4.3 Histogram

The preceding algorithms use only the Some/None Response form of feedback. The re-
sponse count is of equal importance in many of our algorithms. For example, we can form
a histogram, of any numerical feature in the CAAPP using the response count. This is
quite simple to do: For each bucket in the histogram, we associatively select those cells
whose values fall within the range of the bucket by broadcasting the minimum and max-
imum value of the range, comparing with the cell's value, and appropriately setting the
response register to 0 or 1; then a count of the responding cells gives the histogram bucket
value. Thus, the time to form the histogram is proportional to the number of buckets in
the histogram (typically about 1.6 microseconds per bucket), and is independent of the
number of values in the array.

26

Load-Processor-Addresses

Coterie-Switches:= (Open. Open, Open. Open) fInitialize coterie switches
FOR Neighbor:= North TO NVest DO Initialize flag for 'ach neighhor'(

Equal: =True

FOR Bit-Num:=Field-Length -1 DOWN TOO0 DO 1For each bit in fieil
Equal:=Equal AND (Neighbor. Fieldl BitNumi =Field IBit-Numi) {Compare own bit with neighbor

IF Equal (If field value matches neighbor, bit for bitl
THEN {Then close the coterie switch to connect with that neighborf

Coterie-Swi tch 1Neighbor1: =Closed
FOR Bit-Num:=Address-Length -1 DOWN TO 0 DO

Find maximumn addresses in coteries~
Response:= AddressifliLNuml (Put bit in response I'egister}
IF Coterie-Some (If any cell has a I in this bitt

THEN
Activity:= Response (Then turn off activity in cells with a 0 in this bit)

Component-Label[Bit Numi :=Coterie.Some! (Save bit values for component label}

Figure 12: Connected Component Labelling using the Coterie Network

Sum: =0 (Initialize sum}

FOR Bit-Num:=High-Order DOWN TO Low-Order DO (Count each bit in field and add to sum, scaling appropriately)
Response:= FieldlBit.Numl
Sum:=Sum '2+Response-Count

Response:= Activity (Count number of active cells)
Mean:= Sum/ Response-Count (and compute mean}

Figure 13: Coinputing time Mean of Values in Selected CAAPP
Cells using the Response Count Operation

4.4 Compute Average Value

Figure 13 gives a CAAPP algorithm that uses the response count to compute the mean

of the values stored in selected cells. The algorithm begins by summing the values in the

selected cells. Starting with the high order bit position of the values to be sumnmed, each

bit of the values in the selected cells is separately counted. The counts are each added

to the overall sum after being appropriately scaled by a power of two. The algorithm

concludes by setting each cell's response bit equal to its activity bit so that the response

count will be the number of active cells, arid dividing the sumn by that count to get thle

mean of the values.

27

{Compute X Magnitude}

Doublei)wn := OwnValue +- OwnValne
IntResult Doile-()wn ± North(l()wri Vahic)
IntResilt IntResult + Souith(Own Valie)
XMagnitude East(lntResult)
XNlagnitude XMagnitudc - West(lnt Result)

{Compute Y Magnitude}

IntResnlt DoubleOwn - East(OwnValie)

IntResult IntResult - West(OwnValiie)

YMagnitude := North(IntResult)

Y-Magnitude YMagnitude - South(IntResult)

Figure 14: Sobel Algorithm for the CAAPP

4.5 The Sobel Edge Operator

Of course, in addition to processing that is oriented around associative feedback, the

CAAPP is able to perform the usual image processing and low level vision algorithms that

do not depend upon feedback to the controller. For example, smoothing operators such as

Gaussian convolution, edge detectors such as the Sobel and Canny operators, local pixel
comparisons, line curvature, border following, etc. all use the mesh connected operations

that are typical of this class of machines.

To demonstrate communication between neighboring CAAPP PEs, the algorithm for

performing a Sobel operation is shown in Figure 14. The Sobel computes the local X
and Y gradient magnitude at each pixel in an image. These X and Y magnitude vectors

subsequently can be combined to form the orientation and magnitude of the local gradient
at each pixel. Pixels with large gradient magnitudes are frequently associated with strong

edges or lines in an image, and therefore are likely to be of use in interpreting an image.

The Sobel operator requires that the image be convolved with two different 3 x 3 masks.
One mask computes the gradient magnitude in the X direction while the other computes

the magnitude in the Y direction. The masks are:

X magnitude: Y magnitude:

-1 0 1 1 2 1
-2 0 2 0 0 0

-1 0 1 -t 2 -1

In the CAAPP, the X magnitude is computed by first having each cell double its own

28

value, and then add the values of its North and South neighbors. This intermediate result
is then used to compute the actual X magnitude by subtracting the intermediate value

of each cell's West neighbor from the intermediate value of its East neighbor. A similar

sequence of operations is used to compute the Y magnitude.

Assuming that the operation is being applied to 8-bit integer pixels, it would require

100 CAAPP instruction cycles (10 microseconds) to compute the components of the Sobel
operator for the image. The gradient magnitude and orientation can be computed from
these components by applying the standard formulas as a sequence of CAAPP arithmetic
operations.

4.6 Create Border Corner Lists

In addition to performing associative Some/None operations, the Coterie Network may
be used to pass messages across the mesh by providing direct links between non-adjacent

processors. In the algorithm shown in Figure 15, it is assumed that some corner detection
operation has been performed on the borders of regions in the image. The result is a sparse
set of processors that are labelled as corners (ie. those processors whose Corner-Tag field
is set to true). One useful feature that can be extracted for each region is a list of the
positions of its corners. The following algorithm forms the corner lists for all regions in
parallel. It begins by making each region an independer coterie using the connected
components labelling algorithm presented earlier. A single cell in each coterie is selected
as the coterie leader. In this case, the chosen cell is the member of the coterie whose cell
address equals the region's component label. The leader is responsible for collecting the
corners for its region, and passing them to the ICAP which stores them in a list.

The first corner is determined by selecting the corner cell in each coterie with the
maximum address. As part of this process, the coterie leader learns that cell's address and
passes it to the ICAP processor associated with the CAAPP chip containing the leader.
The selected corner cell is then shut off and the process is repeated so that the next corner
is selected. The loop ends when there are no more corners to select, at which point every
corner will have been passed to the ICAP by its coterie leader.

This algorithm causes the corner lists to be created in reverse raster-scan order, which
is adequate if the regions are simple convex figures. However, for more complex regions,
it may be difficult to reconstruct the shape of a region given a corner list in this order.
A better arrangement is to list the corners in clockwise (or counterclockwise) boundary
traversal order (i.e. the order in which corners would be encountered as the cells at the
boundary of the region are traversed, starting from some arbitrary boundary point). The
coterie network can also be used to accomplish this task. Although the basic concept for
doing this is quite simple, in practice it is complicated by considerations of regions that are
one-pixel wide and regions that completely enclose other regions. Because the algorithm
is more complex, it is only discussed here in general terms; the detailed discussion will be
left to a future paper.

29

LabelConnectedComponents {Each component is given a unique label that is equal to the maximum cell address
within the component. The label is stored in a field called Co-mponentLabel in

each cell

StartACAP(CornerListBuilder) {A process is started in the ICAP that will respond to each SignaiCAP operation
(except the first) by picking up a corner from the backing store, and adding it to
the list for the appropriate component region I

Activity := 1! {Turn on all cells}
Leader := Address = Component-Label {Identify the leader for each coterie}
BackingStoreWrite(Leader) {Copy leader tags to backing storej
Response := Leader
Latch-LocalCount {Count of leaders in each CAAPP chip}
SignalICAP {The ICAP processor associated with each CAAPP chip reads the local count to

determine the number of coteries for which it will collect corners. Each ICAP
processor also scans its portion of the backing store to determine the addresses of
the leaders in the coteries associated with it

Activity & Response Corner-Tag {Activate all corner cells}
WHILE Some DO {Select corner with greatest address in each coterie}

FOR BitLNum Address-Length - 1 DOWNTO 0 DO
Response := AddressiBitNumi
Next-Corner(BitNum i := Coterie-Some! {Store each bit of the greatest address in all members of the

coterie (including the leader) by ignoring the activity bit }
IF NextCorner(BitYuml THEN

Activity := Response {Turn off cells that are less than the max}
Corner-Tag := False {Disable the greatest corner once it's found}
Backing-StoreWrite(Next Corner) {Copy the address to the backing store}

SignaICAP {The ICAP processor associated with each CAAPP chip picks
up the address stored in each coterie leader location in its por-
tion of the backing store and saves it in a list }

Activity & Response := Corner-Tag! ,Act;vate remaining corners}
END WHILE

Figure 15: Creating Lists of Border Corners

30

As in the preceding algorithm, the first step is to label connected components. After
connected component labelling has been performed, each member of a component examines
its neighborhood to determine whether any neighboring cell has a different component
label. Any cell that has a neighbor belonging to a different region is at the boundary of
its own region. In the simplest case, the cells that are at a region's boundary form a chain
that is a one-pixel wide closed loop. Each cell in the chain will have two neighbors; one in
the clockwise direction and the other in the counterclockwise direction around the loop.
The cells that make up a boundary chain can then set their coterie switches so that the
chain becomes a separate coterie. (Some of the complexity of the actual algorithm stems
from the situations in which a boundary chain is not a simple closed loop and how the
different cases are handled.)

A leader is selected for each of the boundary-chain coteries. Each leader opens the
coterie switch connecting it to its counterclockwise neighbor in the loop. The loop is thus
transformed into an open figure with the leader at one end. Every cell in the chain that
is also tagged as a corner now opens the switch connecting it to its clockwise neighbor in
the chain. Next, each leader broadcasts a bit to its coterie. Because the corner cells have
broken the coterie, the bit will only reach the first corner clockwise along the boundary from
the leader. That corner is then activated and transmits its address back along the coterie
to the leader which subsequently passes the address to the ICAP. The active corner then
closes the switch to its clockwise neighbor and deactivates itself so that further broadcasts
from the leader will pass through it. The process is repeated until all corner cells have been
read out to the ICAP. Note that all region boundaries are being processed simultaneously
through their coterie chains.

4.7 Region Adjacency Graph

A similar algorithm involves collecting a list of adjacent region labels for each region in an
image. This algorithm begins by having every boundary cell get the label of its neighbor
that is in another region, using the SEWN mesh. Each region then performs a coterie-
select-greatest operation on these region labels, and a region label is output to the ICAP
via the coterie leader. All boundary cells that have the selected label are then shut off and
the test is repeated to obtain the next region label. The process is complete when there are
no more labels to output. Because a region label is the address of the coterie leader for a
region, and the ICAP processors are spatially collocated with respect to the CAAPP cells,
each ICAP processor can directly compute the ID number of the other ICAP processors
that contain descriptions of adjacent regions.

4.8 Rule-Based Region Merging

Once the ICAP processors have collectcd the information required to describe a specific
type of image event, for example lines or regions, the ACU can broadcast rules (or con-

31

straints) to the ICAP that cause it to take some action. Given that the ICAP contains an
attribute list for each region consisting of its size, average intensity, list of border corners,
and list of adjacent regions, the ACU could broadcast a rule to the ICAP that is equivalent
to the statement: "If a region is below size X, and is adjacent to one or more regions that
exceed size Y, it should be merged with the adjacent region whose intensity differs least
from its own, but only if the intensity difference is less than threshold Z."

Such a compound rule will actually take the form of a processing script that is down-
loaded to the ICAP processors from the ACU via a broadcast to the ICAP program
memories. The script will actually be a series of calls to library routines that have been
pre-stored in the ICAP. In this case, the script would select regions larger in size than
threshold Y; and have their associated processors transmit their size, intensity, and ID to
all ICAP processors that are associated with an adjacent region. The ICAP processors
then compare each region that is smaller than X to the size and intensity of each region
for which information was received. If the condition for a merge is met, then an ICAP
processor transmits all of the information for the smaller region to the processor that is
responsible for the larger region. The processor that contains the larger region adds the
smaller region's information to its database. The processor that contains the smaller re-
gion transmits the new region label to the CAAPP by writing the label into the backing
store for the region's coterie leader. The ACU then instructs all coterie leaders that have
received new labels to broadcast the new label to their coterie and then resign as coterie
leader. The cells that are on the common boundary between the two regions then close
their coterie switches so that the two coteries are merged into one. The ICAP processor
that was responsible for the smaller region then deletes the region's information from its
database.

A variety of interprocessor communication topologies can be supported in the ICAP,
due to the flexibility of the centrally controlled network switch. For example, topologies
such as the mesh, ring, hypercube, or shuffle can be built with the ICAP switch. In
this algorithm, the mesh topology would be used because the communication tends to be
local in nature. (Information that is to be sent between non-adjacent ICAP processors is
relayed by those processors that are between them.) In order for an ICAP processor to
communicate with its four neighbors, it sends to one neighbor while receiving from the
neighbor in the opposite direction. Each time the ICAP is ready to switch directions, it
signals the ACU which changes the ICAP connection pattern and resynchronizes the serial
ports on all of the ICAP processors. Thus, all ICAP processors might initially transmit to
the North and receive from the South. When all transmissions to the North are finished, the
ACU changes the connection pattern so that all messages will be transmitted to the West
and received from the East, and then signals the ICAP processors to start transmitting
again.

32

5. A Vision Processing Scenario for the IUA

The discussion that follows describes one possible seqiuence of operations on the IUA
that could be used to form an interpretation from an image. This is actually a gross
oversimplification of how the UMass VISIONS system is used to interpret an image (Draper
1987]. It would be impossible to provide a complete discussion of the full interpretation
process on the IUA within the space available in this paper. Our purpose here is merely to
show the types of processing and interactions that can take place in the IUA in a context
that is larger than a single algorithm.

The processing is initiated with a region segmentation of the image. The first step is
to apply an edge-preserving smoothing operator. We use an algorithm which involves a
few iterations of a 3 x 3 window convolution on the CAAPP. The next step is a region seg-
me'ntation [Beveridge 1987], which uses local histograms within 16 x 16 windows. In brief,
each ICAP computes a histogram for the 8 x 8 tile of CAAPP cells associated with it. This

is done by broadcasting a series of value range comparisons and performing local count
operations in the CAAPP. The ICAP simply records the local count for each range corre-
sponding to buckets in the histogram. The ICAPs then merge their histograms through
communication with their horizontal neighbors in the same 16 x 16 window. (Actually,
the algorithm utilizes windows that overlap by 4 pixels in each direction, forming 24 x 24

pixel histograms and requiring a bit more complex communication at the CAAPP and
ICAP levels than we have room to discuss here.) Next, the ICAPs search their histograms
for peaks and valieys, applying various criteria for defining clusters of values. The ICAPs
communicate with their neighbors to consistently extract labels of peaks to be associated
with pixels, and generate a cluster label plane that is returned to the CAAPP through
the backing store. The CAAPPs form connected components within 16 x 16 windows, and
then perform region merging to remove the artificial seams of the 16 x 16 windows in order
to produce the final segmentation.

Another part of the interpretation process involves line extraction. We use the Burns
straight line algorithm [Burns 1986] which begins by applying two 3x3 convolution windows
to compute the Sobel gradient operator on the original image in the CAAPP (this step
can actually be done in parallel with ICAP processing for the region segmentation). Edges
are assigned coarse orientation labels by broadcasting a table of orientation ranges to the
CAAPP processors. When a processor's value falls within an orientation range that is
being broadcast, it stores the associated orientation label. Using the Coterie Network, a
connected components labelling algorithm is run on the orientation label plane producing
regions of pixels with similar gradient orientations, each with a unique label. Short lines
(i.e., regions with a small set of pixels of similar orientation) that result from this process
are associatively selected and then saved for later use as a texture measure. The parameters
describing the remaining "long" lines are transferred to the backing store so that the ICAP
has access to them. The ICAP processors then compute for each region the parameters of a
representative line by fitting a planar intensity surface to the pixel values in the region. The

33

ICAP array links collinear segments that may have resulted from excessive fragmentation
of longer lines in the original image. The result is a set of tokens that describe straight
lines of various lengths which correspond to events in the image.

The next phase of processing results in the construction of a feature database for tile
e-tracted tokens-the Intermediate Symbolic Representation (ISR)-that is stored at the
ICAP level. The CAAPP and ICAP together compute various feature values that describe
the regions and lines that have been extracted from the image. For example, some features
associated with a line might be its length, orientation, the contrast across it, adjacent
regions, end points, etc.

At this point, the ICAP essentially takes over the processing. Our simulations indicate
that the preceding operations take on the order of 20 milliseconds to perform. During
tile remainder of the scenario the CAAPP is free to receive another image and begin to

do similar or other types of low-level processing in a pipeline fashion. This could involve
stereo or motion analysis, or simply preparing the next frame for merging with the token
database.

Next, the ICAP applies sets of object constraints retrieved from the knowledge base in
the SPA shared memory to the tokens in the ISR that are resident in ICAP memory in
order to form initial object hypotheses. Constraints are minimum and maximum values
on token attributes that form a range on accepting tokens as object hypotheses [Hanson
and Riseman 1986, 1987; Lehrer et al. 19871. For each hypothesis, a score and threshold
are generated within each ICAP for its token set. During this phase the ICAP processors
are essentially running in MIMD mode.

The next major step involves geometric grouping of lines based on collinearity, par-
allelism, and orthogonality to abstract more complex geometric structures. The ICAP
returns to synchronous-MIMD operation in order to facilitate the exchange of information
between ICAP processors.

The last phase uses the results of the previous two phases to extend hypotheses, detect
conflicts between them, and resolve those conflicts. It is at this point that the SPA takes
a greater role. The ICAP processors transfer selected token labels to the memory that is

shared with the SPA. The different object schemas [Dra'per 19871 in the SPA apply various
grouping strategies to the tokens by issuing commands to the ICAP processors that refer
to the token labels and object verification strategies. Through a global blackboard the
schemas incrementally attempt to resolve conflicts and find a consistent set of hy-)otheses
with proper spatial and spectral relationships. Algorithms from the previous phases may be
selectively repeated with different parameters and for different goals as different strategies
for object verification are applied in different areas of the image to arrive at a consistent
interpretation of the scene.

341

6. Performance on the DARPA Integrated Image Understand-
ing Benchmark

In 1987 and 1988, the University of Massachusetts and the University of Maryland devel-
oped, at DARPA's request, a new benchmark to test the performance of parallel proces-
sors on an image understanding task. In this section we describe the benchmark task and
present performance results for the IUA on the benchmark. The IUA simulation showed
the capability for the system to solve a vision task roughly as much as 10,000 times faster
than a Sun workstation.

6.1 Image Understanding Benchmark Description

The overall task that is to be performed by this benchmark is the recognition of an ap-
proximately specified 2 1/2 dimensional "mobile" sculpture in a cluttered environment,
given images from intensity and range sensors. The intention of the benchmark designers
is that neither of the input images, by itself, is sufficient to complete the task.

The sculpture to be recognized is a collection of two-dimensional rectangles of various
sizes, brightnesses, two-dimensional orientations, and depths. Each rectangle is oriented
normal to the Z axis (the viewing axis), with constant depth across its surface, and the
images are constructed under orthographic projection. Thus an individual rectangle has
no intrinsic depth component, but depth is a factor in the spatial relationships between
rectangles. Hence the notion that the sculpture is 2 1/2 dimensional.

The clutter in the scene consists of additional rectangles, with sizes, brightnesses, two-
dimensional orientations, and depths that are similar to those of the sculpture. Rectangles
may partially or completely occlude other rectangles. It is also possible for a rectangle
to disappear when another rectangle of the same brightness or slightly greater depth is
located directly behind it.

A set of models is provided that represent a collection of similar sculptures, and the
recognition task involves identifying the model which best matches the object present in the
scene. The models are only approximate representations of sculptures in that they allow
for slight variations in component rectangle's sizes, orientations, depths, and the spatial
relationships between them. A model is constructed as a tree structure where the links
in the tree represent the invisible links in the sculpture. Each node of the tree contains
depth, size, orientation, and intensity information for a single rectangle. The child links of
a node in the tree describe the spatial relationships between that node and certain other
nodes below it.

The scenario that the designers imagined in constructing the problem was a semi-
rigid "mobile", with invisible links, viewed from above, with bits and pieces of other
mobiles blowing through the scene. The state of the system is that previous processing
has narrowed the range of potential matches to a few similar sculptures, and has oriented
them to correspond with information extracted from a previous image. However, the

35

Figure 16: Intensity Image of Model Alone

objects in the scene have since moved, and a new set of images has been taken prior to
completing the matching process. The system must make its final choice for a best match,
and update the corresponding model with the positional information extracted from the
latest images.

The intensity and depth sensors are precisely registered with each other and both have
a resolution of 512 x 512 pixels. There is no averaging or aliasing in either of the sensors.
A pixel in the intensity image is an 8-bit integer grey value. In the depth image is a 32-bit
floating-point range value. The intensity image is noise free, while the depth image has
added Gaussian noise.

A set of test images is created by first selecting one of the models in a set. The
model is then rotated and transh ted as a whole, and its individual elements are then
perturbed slightly. Next, a collection of spurious rectangles is created with properties
that are similar to those in the chosen model. All of the rectangles (both model and
spurious) are then ordered by depth and drawn in the two image arrays. Lastly, an array
of Gaussian-distribution noise is added to the depth image array.

Figure 16 shows an intensity image of a sculpture alone, and Figure 17 shows the
sculpture with added clutter.

Processing in the benchmark begins with some low-level operations on the intensity and
depth images, followed by some grouping operations on the intensity data that result in
the extraction of candidate rectangles. The candidate rectangles are used to form partial
matches with the stored models. For each model, it is possible that multiple hypothetical
poses will be established. The benchmark then proceeds through the model poses, using
the stored information to probe the depth and intensity images in a top-down manner.

36

Figure 17: Image of Model with Clutter

Each probe can be thought of as testing an hypothesis for the existence of a rectangle

in a given location in the images. Rejection of an hypothesis, which only occurs when

there is strong evidence that a rectangle is actually absent, results in elimination of the

corresponding model pose. Confirmation of the hypothesis results in the computation
of a match strength for the rectangle at the hypothetical location, and an update of its

representation in the model with new size, orientation, and position information. It is

possible for the match strength to be as low as zero when there is no case of a rectangle
that is entirely occluded by another. After a probe has been performed for every unmatched
rectangle in the list of model poses, an average match strength is computed for each pose
that has not been eliminated. The model pose with the highest average match strength
is selected as the best match, and an image is generated that highlights the model in the
intensity image. Figure 18 lists all of the steps that make up the complete benchmark

task.
The benchmark specification requires that this set of steps be applied in implementing

a solution. Furthermore, for each step, a recommended method is described that should be

followed whenever possible. However, in recognition of the fact that some methods simply
may not work, or will be extremely inefficient for a given architecture, implementors are

permitted to substitute other methods for individual steps. When it is necessary for an
implementation to differ from the specification, the implementor is expected to supply a
justification for the change. It is also urged that, if possible, a version of the implementation
be written and tested with the recommended method so that the difference in performance

can be determined.

:37

Low-Level, Bottom-Up Processing
Intensity Image Depth Image
Label Connected Components 3x3 Median F~iler
Comoute K-Curvature 3x3 Sobel and Gradient Maacnilucle
Extract Corners Threshold

Intermediate Level Processing
Select Comoonents with 3 or More Corners
Convex Hull of Corners for Each Component
Comoute Anates Between Successive Corners on Convex Huils
Select Corners with K-Curvature and Comouted Anales Indicating a Riaht Ana!e
Label Comoonents with 3 Contiauous Richt Angles as Candidate Rectanoles
Comoute Size. Orientation. Position. and Intensity for Each Candidate Rectanale

Model-Based. Top-Down Processing
Determine all Single st Isomorphisms of Candidate Rectanales in Stored MoExels
Create a List of all Potential Model Poses
Perform a Match Strenath Probe for all Single Node Isomorphisms (see below)
Link Tocether all Single Node Isomorohisms
Create a List of all Probes Reauired to Extend Each Partial Match
Order the Probe List Accordina to the Match Strenath of the Partial Match Beino Extended
Perform a Probe of the Depth Data for Each Probe on the List (see below)
Perform a Match Strength Probe for Each Confirmina Depth Probe (see below)

Ucdate Rectangle Parameters in the Stored Model for Each Confirming Probe
Prooagate the Veto from a Rejecting Depth Probe Throughout the Corresoonaino Partial Match
When No Probes Remain. Compute Average Match Strenoth for Each Remaining Model Pose
Select Model with Hiahest Average Match Strength as the Best Match
Create the Outout Intensity Image, Showing the Matching Model

Depth Probe
Select an X-Y Oriented Window in the Depth Data that will Contain the Rectangle
Perform a Hough Transform Within the Window
Search the Houah Array for Strong Edaes with the Aoproximate Expected Orientations
If Fewer than 3 Edges are Found, Return the Original Model Data with a No-Match Flag
If 3 Edaes are Found. Infer the Fourth from the Model Data
Compute New Size, Position, and Orientation Values for the Rectanale

Match-Strength Probe
Select an Oriented Window in the Depth Data that is Slightly Larger than the Rectanale
Classify Depth Pixels as Too Close, Too Far, or In Range
If the Number of Too Far Pixels Exceeds a Threshold. Return a Veto
Otherwise. Select a Corre rondin q Window in the Intensity Image
Select Intensity Pixels with the Correct Value
Comoute a Match Strength Based on the Number of Correct vs. Incorrect Pixels in the Images

Figure 18: Steps that Compose the Integrated Image Understand-
ing Benchmark

38

6.2 Image Understanding Architecture Benchmark Results

Because the IUA is still under construction, an instruction-simulator was used to develop

the benchmark implementation. The simulator is programmed in a combination of Forth

and an assembly language which has a syntax that is similar to Ada or Pascal. The

benchmark was developed over a period of about six months, but much of that time was

spent in building basic library routines and additional tools that were generally required

for any large programming task. A 1/64th scale version of the simulator (4096 low-level,
64 intermediate-level, and one high-level processor) runs on a Sun workstation, and was

used to develop the initial benchmark implementation. The implementation was then

transported to a full-scale IUA simulator running on a Sequent Symmetry multiprocessor.

Figure 19 presents the results from the LUA simulations with a resolution of one instruction
time (0.1 microsecond). There are several points to note about these results. Because
the processing of different steps can be overlapped in the different processing levels, the
sum of the individual step timings does not always equal the total time for a segment of
the benchmark. Some of the individual timings represent average execution times, since
the intermediate level processing takes place asynchronously and individual processes can
vary in their execution time. For example, the time for all of the match-strength probes

is difficult to estimate since probes are created asynchronously and their processing is
overlapped. However, the time for a step such as match extension takes into account the

span of time required to complete all of the subsidiary match-strength probes. Lastly, it
should be mentioned that the intermediate-level processor was greatly underutilized by
the benchmark (only 0.2% of its processors were activated), and the high-level processor
was not used at all. The low-level processor was also idle roughly 50% of the time while
waiting for top-down probes from the intermediate level.

39

Data Set Sample Test Test 2 Test 3 Tst I

Total 0.0844445 0,0455559 0.04155088 0.4180890 0.397P59
Overhead 0.0139435 0.0139435 0.0139435 0.0139435 0.0139435
Miscellaneous 0.0092279 0,0092279 0.0092279 0.0092279 0.0092279
Startup 0.0038682 0 0038682 0.0038682 0.0038682 0.003F682
image input 0.0000020 0.0000020 0,0000020 0.0000020 0 0000020
Image output 0.0000020 fl 0000020 0.0000020 0.0000020 0.0000020
Model input 0.0008302 0.0008302 0.0008302 0.0009302 0.000R302

Label connected components 0.0000596 0.0000596 0.0000596 0.0000596 0 0000596
Rectangles from intensity 0.0161694 0.0125489 0.0134704 0.0131378 0.0129635
Miscellaneous 0.0003227 0.0002421 0.0002010 0.0006216 0.0002121
Trace region boundary 0,0033792 0.0015472 0.0018672 0.0010912 0.0012832
K-curvature 0.0038256 0.0019936 0.0023136 0.0015376 0.0017296
K-curvature smoothing 0.0005525 0.0005525 0.0005525 0.0005525 0.0005525
First derivative 0.0003777 0.0003777 0.0003777 0.0003777 0.0003777
Zero-crossing detection 0.0000108 0.0000108 0.0000108 0.0000108 0.0000108
Final corner detection 0.0000118 0.0000118 0.0000118 0.0000118 0.0000118
Count corners 0.0000020 0.0000020 0.0000020 0.0000020 0.0000020
Convex hull 0.0036694 0.0019109 0.0015290 0.0025947 0.0026463
Test for right angles 0.0006122 0.0006009 0.0005906 0.0006421 0.0006421
Final rectangle hypothesis 0.0067877 0.0067877 0.0078821 0.0067877 0.0064229
Median filter 0.0005625 0.0005625 0.0005625 0.0005625 0.0005625

Sobel 0.0026919 0.0026919 0.0026919 0.0026919 0.0026919
Initial graph match 0.0121876 0.0076429 0.0066834 0.1124236 0.0822296

Match data rectangles 0.0029096 0.0015672 0.0013264 0.0134885 0.0106136
Match links 0.0088872 0.0056950 0.0049762 0.0985542 0.0712324
Create probe list 0.0000968 0.0001299 0.0001130 0.0009252 0.0008618
Partial match 0.0033786(0.0077033 0.0068704 0.1828976 0.1534418
Match strength probes 0.0009275 0.0011460 0.0012285 0.0025175 0.0212640
Window selection 0.0002100 0.0003000 0.0002700 0.0005700 0.0004800
Classification and count 0.0001043 0.0001490 0.0001341 0.0002831 0.0002384

Match extension 0.0300650 0.0017674 0.0024856 0.0899214 0.1277396
Match strength probes 0.0026500 0.0001146 .0004095 0.0543250 0.0071766

Window selection 0.0006000 0.0000300 0.0000900 .0012300 0.0016200
Classification and count 0.0002980 0.0000149 0.0000447 0.0006109 0.0008046

Hough probes 0.0068430 0.0003251 0.0005092 0.0084591 0.0109868
Window selection 0.0000675 0.0000045 0.0000090 0.0001755 0.0002385
Hough transform 0.0053010 0.0002223 0.0003036 0.0044499 0.0053477
Edge peak detection 0.0011745 0.0000783 0.0001566 0.0030537 0.0041499
Rectangle parameter update 0,0003000 0.0000200 0.0000400 0.0007800 0.0010600
Result presentation 0.0022826 0.0009452 0.0011944 0.0029768 0.0029766
Best match selection 0.0000404 0.0000403 0.0000405 0.0000406 0.0000397
Image generation 0.0022352 0.0009185 0.0011396 0.0029464 0.0029464

Statistics
Connected components 131 35 34 114 100
Rectangles detected 31 23 19 60 55
Hough probes 44 5 8 84 100
Initial match strength probes 21 20 15 81 80
Extension mat. str. probes 20 1 3 41 54
Models remaining 3 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.45 0.86 0.84 0.81 0 84
Translated to 151,240 256,256 257,255 257,255 257.255
Rotated by 85 359 113 23 23

Figure 19: Image Understanding Architecture Results

.10

7. Image Understanding Architecture Program Second Year Sum-
mary of Efforts At Hughes

This section is a summary of the implementation/test activities at Hughes over the past
year as part of DARPA/ETL funded program to build a feasibility prototype of the Image
Understanding Architecture (IUA). The basic IUA includes 4096 CAAPP cells, 64 ICAP
cells, a single SPA processor, and an array control unit. The entire prototype will plug
into a single-user VME based workstation that will serve as a host.

This prototype consists of one motherboard containing 64 daughterboards, a concen-
trator board, an interconnect board and four driver boards. The daughterboard contains
the custom CAAPP/glue chip, the TI TMS320C25 Digital Signal Processing (DSP) chip
for the ICAP level, plus 256K bytes of static (SRAM) and 448K bytes of dynamic video
memory (VRAM). Each of the 64 bit-serial processing elements (PEs) on the CAAPP chip
contain 320 bits of local data storage. This custom VLSI chip was designed in 2- micron
CIOS with 2 metal layers and contains approximately 130,000 devices.

This report summarizes our test results of the custom CAAPP/glue chip and its op-
erations in two different breadboard environments: full daughterboard and two CAAPP
custom chips. Due to limited testing time, only first-order debugging has been done.

7.1 Test Report for the CAAPP/Glue Chip

The breadboard shown in Figure 20 is used to test the CAAPP chip. The tests were based
on two "good" dies out of 30 received from MOSIS. These chips had only CAAPP circuitry
without the glue logic. The processing results of the 64 CAAPP PEs were observed at
the edge of the mesh network at the chip boundary through eight consecutive shifting
operations. Loading different data for each CAAPP PE also occurs through shifting on
the mesh network. We have successfully tested all of the registers including the zero-reg
(setting every PE to 1 or 0), page 1 and 2 of memory, and most of the function (ftn) fields.
Byte transfer using the mesh registers works correctly for page 1, and validates the CAAPP
PE's 8-bit data path. Most of the corner turning circuitry works, but PE 12 is stuck at 1 for
both of the good dies. Because the chip timing is very important for successful operation,
and because we have only two dies to test, we aren't sure whether this represents a design
error or a fabrication error. We've repeated our simulations and they show that this PE
should work. We will continue our tests by adjusting the separation interval among the
three clocks, and adding extra de- coupling capacitors, without modifying the chip design.
We are continuing our debugging process.

7.2 The Full Daughterboard Breadboard

The breadboard, shown in Figure 21, consists of one CAAPP/glue custom chip, a backing
store video RAM block, one TI TMS20C25 DSP chip, and an SRAM block for its program

41

coupona Mon.

cum fc

lot

.10

UZA

see

f7-6

Figure 20: Two-chip Breadboard

.12

and data memory. The daughterboard is intended to be a glue-free cost-effective building
block for the full IUA system. To efficiently integrate the five basic components of the
daughterboard, all the necessary "glue" circuitry is included in the same full-custom chip
containing 64 CAAPP PEs. No external "glue" logic except drivers is required on the
daughterboard. The glue logic will interpret CAAPP Chip instructions from the controller,
while the CAAPP array will execute only CAAPP PE instructions. The testing we have
done so far is based on 50 parts received from MIOSIS containing the CAAPP and glue
logic. The yield on the glue logic appears to be very high.

The purpose of the daughterboard breadboarding is to verify that on-chip custom
glue logic can efficiently integrate the three different processor types and their associated
memories in the IUA. Due to limited testing time, only the following functions have been
tested: reset the IUA, ICAP/ACU interface, the ICAP memory interface including the
response count, and the backing store iead or write for the CAAPP PE.

7.2.1 ICAP/ACU Interface

The ICAP/ACU interface circuitry provides the interface between ACU and ICAP along
with its program and data memory space. It allows the ACU to place the ICAP into a hold
mode, featuring relinquished ICAP bus control, so that the ICAP's memory can be directly
accessible to the ACU instruction bus. The interface includes one auto-incrementable 16-
bit Address Register (AR) which points to the current ICAP memory location where the
data will be written by the ACU. Every time the ACU is finished writing one data item into
a specified location, the AR register is auto- incremented. The information written by the
ACU can include ICAP program subroutines, routine parameters or data, etc. Similarly,
the interface allows the ACU to release the ICAP from the hold mode. It also provides
the ACU a means to interrupt the ICAP and force it to start to execute the routines just
loaded.

We successfully observed the control signals to hold/release the ICAP by monitoring
the contents of the address bus and were able to connect the ACU instruction bus to either
[CAP program or data memory space. By monitoring the contents of the address bus, we
verified that the AR register did auto-increment after each write. Using the test mode of
the connect-to instruction, we observed correct contents on the data bus from both the
program and data memory space. In other words, the ACU correctly loaded patterns into
the static RAM block in our daughterboard breadboard via the custom chip.

7.2.2 ICAP Memory Interface

ICAP memory interface circuitry provides the interface between the ICAP and its program,
data, and I/O memory space. It will decode memory access signals from the ICAP and
generate enable signals to one of the four destinations: static RAM (SRANI) chips, CISNI
or ISSM VRAM chips, or I/O ports in the CAAPP chip; different sets of control signals

13

Figtire 2 1: Da ught"crd.~
Breld1)oalr(

such as write enable and read/output enable signals will be generated for each of the -t
destinations because each has its unique timing requirements. Since SR.ANI, VRANs and
the CAAPP chip are different physical devices sharing the same ICAP system bus, tlhe
interface circuitry has to provide the necessary arbitration by allowing only ,me active
master. The others must have their drivers tri-stated. At times, the interface circuitry
will also insert required ICAP wait states for some situations such as access by the ICAP
of a new page in CISM or access of an old page, while a transfer from the CISM's random
port to the serial port is in progress or refresh, etc.

The ICAP memory interface also contains some 1i,0 ports such as the ICAP count
register (ICR), and the ICAP page register (IPR). The ICR allows the ACU to use global
response count circuitry to accumulate the total count sent from all the ICAPs instead
of those counts from CAAPP PEs. IPR contains the page number that specifies which
page of the CISM is currently accessible by ICAP through the zero-wait-state page-mode
operation. If the ICAP wants to access a new page in CISM, then one wait state has to
be inserted to load a new row address into VRAM. This can be accomplished by an ICAP
access to the IPR port.

Except for the ISSM. we have tested every ICAP memory interface mentioned above.
We found out that our commercial SRAM does not meet the manufacturers specification.
When chip select (CS) is disabled, the output enable (OE) signal should not affect the
system data bus. However, we found out some patterns of data from CISM are not correct
due to the influence of the SRANI with its CS disabled. If we forced the OE of the SRAM
to be disabled, the problem went away. More extensive tests are required to guarantee
that the four different physical devices sharing the same ICAP system bus do not affect
each other inappropriately. All the other interface tests were successful. For example, we
were able to access new pages by writing to the IPR port, loading one pattern into the ICR
port, transferring to an eight bit shift register, and successfully shifting out the response
count bit serially to the future global count circuitry for accumulation.

7.2.3 Backing Store Controller

The video RAM controller arbitrates the requests from various masters and generates the
appropriate VRAM control signals such as row address strobe (RAS), column address
strobe (CAS), data transmission (DT), read or write enable. -t also inserts ICAP wait
states by driving the "READY" line low whenever it requires use (f the ICAP address bus
to control the V"RAM.

The transfer controller also contains two 6-4-bit 4-way time- multiplexed buffers. For
example, in the case of the backing store read operation, while one buffer is receiving the
next four 16-bit words (i.e. 8 bytes) via 16 CAAPP pins from the Serial Port, another
buffer is using a cycle stealing technique to download the current 8 bytes to a group of 8
CAAPP PEs via an 8-bit data path for each involved PE. Then the two buffers will switch
roles for receiving and downloading.

15

Before we tested the backing store controller, we used the ICAP memory interface to
load 64 bytes of CAAPP PE coordinates into the random access port of the CISNI, and
verified it by reading it out from the same port. After issuing the backing store read
instruction, we successfully observed the correct data coming out from the serial port of
the CISNI after the strobing of each serial clock (SC). This demonstrates that the page
number, starting column address within the serial port, and VRAM control signals are
all correctly generated by the backing store controller. It also completed the operation as
expected.

To verify whether the data has been stored in page zero of the CAAPP PEs, the backing
store write instruction was issued. The data was also verified by reading the random access
port of the CISM. Furthermore, it demonstrated that when data is moved between the
CAAPP and the CISM it goes through an automatic corner turning mechanism that
provides bit-serial data access to the CAAPP and byte-parallel access to the ICAP. From
the backing store controller's point of view, it was a complete success. 1owever, we had
to increase the delay between the negative going edge of the phi 2 cock to the positive
going edge of the phi 1 clock from 20 ns to 50 ns (the spec is 5ns). :he operations Nere
verified for bytes 0, 1, 14 and 15 of page 0 of every CAAPP PE. We did have a problem
getting out the first 8 bytes of the 64 bytes of data, but think for various reasons .1:- this
is a timing issue. One other problem we had is that the data in the CAAPP was destroyed
after we repeatedly issued the backing store write instruction. We re-ran simulat'ions in
the APOLLO, and found that we can write as many times as we wish and the 3a-a is
still retained in the CAAPP. Further debugging is required. Since the CAAPP PE has
dynamic memory, which is very sensitive to clock timing, the final system clock speed
depends heavily on the foundry's processing parameters. The VRAM is also very sensitive
to the clock timing during serial write operations; sometimes the first data was written into
the location specified by the starting column address (SCA), other times it was written
into SCA + 1. Obviously, more effort is required to maintain the data integrity.

The refresh ,ircuits did cooperate with the VRA: controller to generate the appropri-
ate VRAM refresh signals. When the reiresh signai from L'he ACU is high, it will repeat
the VRAM's CAS before RAS refresh cycle to refresh ail the mer..ory cells.

7.2.4 Two CAAPP Custom Chip Breadboard

The breadboard, shown in Figure 22, consists of a socket card accommodating two neigh-
boring CAAPP custom chips, a vertical Video RAM (VRAM) card, and a VNIE chassis
containing VNIE interface and VRAM controllers for IICSNI and ISSNI. The serial port

side of the VRAM card is connected to the two CAAPP chips via sharing the mesh net-
work; the random access port side is connected to the SUN workstation and appears in the
VME space so that a small image can be loaded from disk onto the C AAPP to perform
an associative memory demonstration. The interface between the INIS tester and the SUtJN
host is via control registers located in the ertical VRA NI card.

16

Aj

AGE..........

I ME

i\4e,,,ory l3radboard

Figitre 22-- Associative

In the first step of two-chip breadboarding, we verified that two CAAPP chips can talk
to each other. Chips are arranged in north- south fashion. We can send arbitrary byte
patterns from the south side of the south chip to appear on the south side of the north chip
after 8 clock cycles (5NIlz) of shifting from south to north, and after another 8 clock cycles
the same data began to appear on the north side of the north chip. The reverse direction
from north to south has also been tested. To test east-west connection, we wired the east
side mesh net of the south chip to the west side of the north chip. Similarly, for west to
east shifting, we sent patterns from the west side of the south chip and they appeared on
the west side of the north chip after 8 clock cycles, and after another 8 clock cycles the
same data began to appear on the east side of the north chip. Our future tests will involve
transferring data between the SUN workstation via HCSNI and two CAAPP chips from
their south sides to verify that we can time-share the mesh network between neighborhood
communication and the distributed 1/0 which supports the associative memory.

8. Changes in Project Schedule and Goals

The hardware side of our project schedule has now slipped by almost a year. Much of
this can be attributed to delays in fabrication, or faulty fabrication runs of our custom
VLSI chips. Our first fabrication runs (both at UMass and Hughes) ran into a problem
of excessive metal spreading with one foundry. This resulted in roughly a three month
delay. One of our recent runs (again, both at UMass and Hughes) ran into other vendor
problems that, at the time of this report have resulted in a five-month delay with at least
one more month of delay expected. However, we must also accept some blame for having
been overly optimistic in our initial schedule estimates.

In contrast, our software efforts have kept pace with the original schedule with the
exceptions that the ICAP kernal is not as fully developed as we would like, and we have
not been able to transport the environment to the actual hardware (since the latter does not
vet exist). Instead of these activities, we have undertaken the development of sequential
and parallel solutions to the Integrated Image Understanding Benchmark. The parallel
solutions have been written for both the IUA and a Sequent Symmetry multiprocessor.
The former has resulted in three types of contribution to our primary activity. First, it
has lead to the deveiopment of many IU algorithms and supporting library routines for the
IUA; second, it has helped us to more fully test and debug our development environment
and has also resulted in many valuable enhancements to our software tools; third, it has
given us more insight into the strengths and weaknesses of the IUA design, applied to a
larger IU task, which will result in several small but significant changes to be implemented
in the next version of the architecture.

It should also be noted that the goals of our project have changed somewhat from our
original proposal. These changes are reflected in a modification to our contract that was
approved during this year. The change basically provides for UINlass and lughes to perform
sufficient additional integration work to turn the IUA prototype into a reliable, usable

48

system instead of being simply a proof-of-concept demonstrator. The change requires
several more months of development effort on the part of Hughes and additional software
integration work at UMass. These efforts will take place after the end of the initial contract
period.

19

9. Conclusions

Two out of three of our custom chips have been verified to be fully functional and major
portions of the third chip were also shown to operate correctly. Extensive simulations of
the third chip, including connections to its associated componentry, have given us confi-
dence that the newest version will work if only it can be fabricated properly. All of the
circuit boards for the prototype have been designed, and the physical assembly and I/O
subsystems have been fully specified.

Most aspects of the software development effort are on schedule, and we have managed
to go beyond the original project goals in several areas. In particular, our simulator
environment has become a very polished and integrated development tool that has greatly
facilitated the creation of many vision algorithms and support routiaes. The simulator now
mimics the entire IUA prototype, and a full-scale IUA version of the simulator is running in
parallel on a Sequent Symmetry multiprocessor (with some limitations due to insufficient
memory on the Sequent). We have also implemented the complete DARPA Integrated
Image Understanding Benchmark on the IUA simulator (in addition to our versions for
the Sun and Sequent). The IUA version of the benchmark demonstrated that the machine
will be capable of performing an integrated vision task at speeds that approach frame rate
and are certainly within the realm of real-time vision.

The IUA hardware construction effort has been substantially delayed by VLSI fabrica-
tion problems with the vendors under contract to MOSIS. Having to wait over six months
for fabrication of our two largest custom chips is the major factor in the construction de-
lay. We have worked around the fabrication delays as much as possible, through extensive
simulation and rescheduling of certain tasks, but it has nonetheless been necessary to push
back the prototype delivery date. Other factors contributing to the delay are the difficulty
in obtaining video-RAM parts, and the change in the goals of the project to make the
prototype more robust.

In anticipation of delivery of the working prototype, we have submitted a continuation
proposal to fund the use of, experimentation with, and analysis of the IUA prototype. The
goal of this second phase effort is the development of the specification and design for the
next generation of the IUA. We expect this next generation design to be an order of mag-
nitude more powerful than the current design, and to be substantiaily more sophisticated
at the intermediate and high levels.

50

10. References

[Arvind, 1983] Arvind, D.K., I.N. Robinson, and I.N. Parker, "A VLSI chip for real-time
image processing," Proc. IEEE Inst. Symp, Circuits Syst., pp. 405-408, 1983.

[Batcher, 1980] Batcher, K. E., "Design of a Massively Parallel Processor." IEEE Trans.
Comp., Vol. C-29, No. 9, September 1980.

[Benes 62] Benes, V.E., "On Rearrangeable Three-Stage Connecting Networks," Bell Sys-
tems Tech. Journal, vol. XLI, no. 5, pp. 1481-1492, September 1962.

(Beveridge, 19891 Beveridge, J.R., Griffith, J., Kohler, R.R., Hanson, A.R., Riseman, E.M.,
"Segmenting Images Using Localized Histograms and Region Merging," COINS Technical
Report 87-88, University of Massachusetts.

[Burns, 1986 Burns, I.B., Hanson, A.R., Riseman, E.M., "Extracting Straight Lines,"
IEEE Trans. PAAII,Vol. 8, pp. 425-455, 1986.

[Clos 53] Clos, C., "A Study of Non-Blocking Switching Networks." Be:' Systems Tech.
Journal, vol. 32, no. 2, pp. 406-424, March 1953.

[Davis, 19841 Davis, R., Thomas, D., "Geometric Arithmetic Parallel Processor-Systolic
Array Chip Meets the Demands of Heavy-Duty Processing," Electronic Design, pp. 207-
218, October 31, 1984.

[Draper, 1987] Draper, B.A., Collins, R.T., Brolio, J., Griffith, J., Hanson, A.R., Riseman,
E.M., "Tools and Experiments in the Knowledge- Directed Interpretation of Road Scenes,"
Proc. Image Understanding 1! orkshop, Morgan Kaufmann, Los Altos, CA, 1987.

[Draper, 1988] Draper, B.A., Collins, R.T., Brolio, J., Griffith, J., Hanson, and Riseman,
E.M., "The scheme system", COINS Technical Report 88-76, University of Massachusetts.

[Duff, 1978 Duff, M.J.B., "Review of the CLIP Image Processing System," Proc. Nat.
Comput. Conf., AFIPS, pp. 1055-1060, 1978.

[Erman, 1980] Erman, L., et al., "The HIearsay-Il Speech-Understanding System: Integrat-
ing Knowledge to Resolve Uncertainty," Computing Surveys, Vol. 12, pp. 213-253, 1980.

[Foster, 19761 Foster, C.C., "Content .lddressable Parallel Processors," Van Nostrand Rein-

51

hold, NY, 1976.

[Hanson, 19861 Hanson, A.R., Riseman, E. M., "A Methodology for the Deveiopment of
General Knowledge-llased Vision Systems," In: V'ision, Brain, and Cooperative Compu-
tation, M. Arbib and A. Hanson (eds.), MIT Press: Cambridge, MA, 1986.

[Hanson, 1987 Hanson, A.R., Riseman, E.M., "From Image Measurements to Object Hy-
potheses," COINS Tech. Rept. 87-129, University of Massachusetts at Amherst, December
1987.

[Iillis, 19861 Hlillis, D.W., The Connection Machine, MIT Press, Cambridge, MA, 1986.

[Hunt, 1981 Hunt, D.J., "The ICL DAP and Its Application to Image Processing," In Lan-
guages and Architectures for Image Processors (M.J.B. Duff, S. Levialdi eds.), Academic
Press, London, 1981.

[Kumar, 19851 Kumar, V.K.P and C.S. Raghavendra, "Array processor with multiple
broadcasting," Proc. 12th Ann. Inst. Symp. Comput. Architecture, June 1985.

[Lehrer, 1987[Lehrer, N.B., G. Reynolds, and J. Griffith, "A Method for Initial Hypoth-
esis Formation in Image Understanding," Proc. hnt. Conf Computer Vision, Computer
Society Press, London, England. pp. 578-585, June 1987.

[Levitan, 19841 Levitan, S.P., "Parallel algorithms and architectures: a programmers per-
spective." PhD dissertation, Computer and Information Science Department; also COINS
Tech. Rept. 84-11, University of Massachusetts at Amherst, May 1984.

[Li, 19871 Li, H., and M. Moresca, "Polymorphic Torus Network," Proc. Intl. Conf
Parallel Processing, Pennsylvania State University Press: State College, Pennsylvania,
1987.

(Miller, 19871 Miller, R., and V.K.P. Kumar, Dionisios Reisis, and Q.F. Stout, "Parallel
Computations on Reconfigurable Meshes," USC Tech. Rept. IK'.S #229, University of
Southern California, Los Angeles, CA, March 1987.

[Nii, 19861 Nit, Ih.P., "The Blackboard Model of Problem Solving and the Evolution of
Blackboard Architectures," AI Magazine, vol 7, no. 2, pp. 3 8 -5 3 , 1986.

[Rana 88[Rana, D., Weems, C.C., and Levitan, S.P., "An Easily Reconfigurable Circuit
Switched Connection Network", Proc 1988 IEEE lnt Symp on Circuitls and Syst, pp. 247-

250, June 1988.

52

[Random 1987] The Random House Unabridged Dictionary of the English Language 2nd
ed., S.B. Flexner, and L.C. Htauck (eds), Random House, N.Y., 1967.

!Weems 19841 Weems, C.C., "Image Processing on a Content Addressable Array Parallel
Processor", Ph.D. Thesis, Computer and Information Science Department, University of

Massachusetts, Amherst, MA, September 1984.

53

11. Appendix: Test Reports for Custom VLSI Chip Fabrication

Efforts at the University of Massachusetts

A.1 Test report for the feedback concentrator chip

P-Name: CONCEN
Fab-ID: M7ACKB01
Source: UMass

This chip implements a feedback data concentrator.

A total of 24 parts were received. They were all in good physical condition.
Ten of the parts were tested, and all were found to be fully functional. Because we

require only five of these parts to build the prototype IUA, we did not bother to test more
than ten of the parts. The remaining parts have been placed in storage, and will be tested
if they are ever needed. Figure 23 is a microphotograph of the fabricated chip.

cC C 0 c; 0 - c C Cc
o1W •1 1 , 1 -

f _L_--_______ __] A

l I

ij-11

Figure 23: Feedback Concentrator Chip

054

A.2 Test report for the ICAP router test-structures chip

P-Name: Test-Chip
Fab-ID: M79XCE01
Source: UMass

This chip implements the various leaf-cells and assemblies that make up the [CAP
communication link chip, with a large number of test points brought out to external pins
to enable more extensive testing, analysis, and debugging.

A total of 30 packaged parts were received. They were all in good physical condition.
We tested 19 of the parts and found that seven were non-functional. The remaining

twelve required high drive currents, and exhibited problems in the memory cell. The high
drive current problem was traced to the use of a scaled pad design that was not directly
scalable. The memory problem was traced to a design error in the memory precharge
timing. Figure 24 shows the ICAP router test-strcutures chip.

13|1

13 N

Figure 24 -CRutrTs Srcues hi

I,5 5

2 m.

• I I

a.. ;I.

[] :: i I

0 0:

0"

0 mm S,

Figure 24: ICAP Rlouter Test Structures Chip

A.3 Test report for the ICAP router chip

P-NAME: ROUTER
ID: 23665
Fab-ID(1): M77PCE1 (VTI) A = 1.O1i (SCN)
Fab-ID(2): M77NCJ1 (UTMC) A = 1.01L (SCP)
Source: UMass

OVERVIEW:

This chip was assigned to two different runs by MOSIS. The circuit implements a
32-input 32-output crossbar switch with a control memory.

The crossbar switch portion of the chip is comprised of 32 MUX bits, each with 32
inputs and 1 output. The inputs of all the MUX bits are bussed together, which make the
32 inputs to the crossbar switch in the chip. The 32 outputs from the MUX bits form the
outputs from the chip.

Each of the 32 MUX bits is designed as a tree structure in which inputs are connected
to the leaves and the output is taken from the root. Path selection at any level of the tree
can be done with a single bit of the control word from the control memory. We need 5
control bits to select any of the 32 inputs to the output in a MUX. Therefore 32 x 5 = 160
bits, which we call a control word, are required to set up a 32-input to 32-output connect;on
pattern in the chip.

The control memory consists of 32 control words. Each of the 32 5-bit bytes in any of
the 32 control words can be written into, first by writing a control word number in a row-
select register, which is mapped to address 32, then writing in appropriate sequence of 5-bit
bytes from address 0 through 31. The design incorporates fu:ly static RAM and registers,
therefore, no refresh is required and the timing is very flexible. The only requirement for
writing is that the data and address should be stable before WRbar line, which is brought
low for at least 100nS.

Our chip design is such that the control word number stored in the row-select register,
selects the control word that determines the input-output connection pattern of the chip.

In a previous report for these chips, we reported suspected bridging faults between
Meta-12 - Metal2. Further investigation of the problem led to the discovery of a fault in
our test system.

UTMC RUN:
A total of 24 parts were received. They were in good physical condition. Bonding of

the parts was good.
About 15 parts were tested and none of them worked. We cannot give much feedback

about this run because all of the outputs in all of the chips were logically stuck-at-l.

56

By visual inspection with a stereo microscope, we found that the geometries on the die
were much better defined than the VTI run, but still metal wires separated by minimum
distance appeared dangerously close in many places.

In consultation with MOSIS, these problems have been traced to the fact that VTI
and UTMC do not planarize their wafers, which leads to excessive spreading in the MNetal2
layer, which might have resulted in shorts between Metal2-Metal2 paths.

VTI RUN:
A total of 24 parts were received. They all were in good physical condition. Bonding

was acceptable in most of the cases, but in some cases, the solder bonds on the dies were
dangerously close to the outer power supply ring of the standard frame.

About 20 parts were tested and none of them worked. There were logical bridging
faults between the outputs, which were at different places in different chips.

We found that the problem we initially detected with the VTI run was not due to the
bridging faults reported by MOSIS. In retesting the chips, we discovered that an unusually
high current was required to pull the input pads high (Ii > 1.5mA for Vi = 4.0V). Since
the drivers of our test system were not capable of supplying this high current, proper logic
levels were not input to the chips and consequently our earlier testing showed a behavior
in which various outputs tracked each other in a manner consistent with what we would
expect if there were metal shorts in our multiplexer array.

NOTE 1:
There waCs a design fault in the address buffers in the chip such that address cannot

be changed. This, however, still allowed us to test the chip to some degree. When power
is turned on, a unique control word number from 0 through 31 appears in the row-select
register. Of course we cannot write in the RAM, but an arbitrary connection pattern also
appears in the control word selected by the row-select register. Therefore we will have
an arbitrary, conflict free connection pattern set up in the chip at power on. This lets us
check the functionality of the MUX and any bridging faults.

NOTE 2:
Some mistakes were done in the layout of the NIUX bit because of that there were

shorts at four places in the MUX bit. The n-type transistors in the MUX bit are twice
as strong as the p-type transistors, therefore, the effect of these shorts on the output is
different for shorts in the n-type structure than the p-type structure.

One of the shorts on the n-side, shorts input 9 to the output from its ancestor transistor.
The result is that if any of the inputs 8 through 11 is selecteci, the connecting path has a
bridging fault with input 9. Since input 9 path is stronger, it gets selected to the output but
the correct path interferes with it. Notice that the correct path is further made stronger by
fault free p-side structfire. This interference cannot be represented as any boolean function

57

as it varies for different shorts. Similar observation holds for input 24 through 27 on the

n-side.
On the p-side. however, for the bridging shorts, the fault free n-side structure is strong

enough most of the time to select the correct input to the output. In some cases, however.

simiular interference is observed. Figure 25 shows the ICAP router chip.

g U.0 r-1

o a'n

o a.1Z.

0 WQ'n

o" U. U. U. .vt v0Vvj

0~~ ~ ~~~~ w n rIIIIIIIUEIIEEE

oitr a5.CPRodrCi

f58

A.4 Test report for the second ICAP router chip

P-Name: TOP-CONNECTOR
Fab-ID: M84KPB1

M88KPB1
Source: UMass

This chip provides a 32-input, 32-output, bit-serial crossbar switch, with a connection
pattern cache that can store up to 32 I/O connection patterns. In the IUA prototype,
eight of these chips are combined to construct a 64 x 64 connection network that links the
64 ICAP processors to each other.

A total of 6 parts were received from the M84KPB1 run, and 56 parts were received
from the NI88KPB1 run, with 26 from one vendor and 30 from another. All of the parts
were in good physical condition.

All six of the M84KPB1 chips were tested, and three were found to be fully functional.
The remainder had random problems that were not repeated on any other devices, and are
probably due to individual defects in fabrication. Only two of the thirty parts from one
of the M88KPBI vendors were found to be fully functional. The remainder had a random
pattern of stuck-at faults and other problems. There were eleven fully functional parts, out
of 26, from the other M88KPB1 vendor, with random faults in the non-functional parts.
All of the M88KPB1 parts were significantly slower than the M84XPB1 devices. Figure
26 shows the second [CAP router chip.

- J -- ,- -

...

INT
-, -....... r- - '-- t

.f

vrrrp.lr .. Fry

Figure 26: Second ICAP Router Chil)

59

A.4 Test report for the second ICAP router test-structures chip

P-Name: TEST-CHIP
Fab ID: M84KMB1

M88K IB1
Source: UMass

The purpose of this chip is to facilitate testing of the individual leaf cells and assemblies
that make up the ICAP Router chip. It provides direct access to various test points that are
not available in the complete router chip, and thus allows more extensive timing analysis,
fault diagnosis, and debugging of structures in the router chips.

A total of 48 parts were received from the two runs. They were all in good physical
condition.

Only two of the chips were tested for timing analysis purposes because the actual router
chips had a high rate of functionality. The two tested parts were fully functional and helped
to verify that the components from the M88KPB1/M88KNIB1 vendors were slower than
those from the M84KPB1/M84KMB1 vendor. Figure 27 shows the second ICAP router
test structures chip.

,w a

aa L U. L .1 L]. L L LI

Figure 27: Second ICAP Router Test Chip

60

